show-that-x-1-x-2-x-n-R-n-k-1-n-x-k-2-n-k-1-n-x-k-2-a-b-gt-0-p-x-x-n-ax-b-0-could-not-have-more-than-3-reals-solutions- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 106315 by pticantor last updated on 04/Aug/20 showthat⊛∀(x1,x2,…..,xn)∈Rn(∑nk=1xk)2⩽n∑nk=1xk2⊛a,b>0p(x)=xn+ax+b=0couldnothavemorethan3realssolutions Answered by Dwaipayan Shikari last updated on 04/Aug/20 ∑nk=1xk2.∑nk=11⩾(Σ(xk.1))2{Cauchyschwarzinequality}n∑nk=1xk2⩾(∑nk=1xk)2{∑n(1)=nItmeansn(x12+x22+x32+x42+….)⩾(x1+x2+x3+x4+…..)2(x12+x22+x32+x42+…)⩾(x1+x2+x3+x4+……n)2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: n-c-r-1-n-c-r-n-1-c-r-solve-for-n-and-r-Next Next post: Question-106314 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.