Menu Close

show-that-x-1-x-2-x-n-R-n-k-1-n-x-k-2-n-k-1-n-x-k-2-a-b-gt-0-p-x-x-n-ax-b-0-could-not-have-more-than-3-reals-solutions-




Question Number 106315 by pticantor last updated on 04/Aug/20
show that  ⊛∀ (x_1 ,x_2 ,.....,x_(n ) )∈R^n   (Σ_(k=1) ^n x_k )^2 ≤nΣ_(k=1) ^n x_k ^2   ⊛a,b>0  p(x)=x^n +ax+b=0  could not have more than 3  reals solutions
showthat(x1,x2,..,xn)Rn(nk=1xk)2nnk=1xk2a,b>0p(x)=xn+ax+b=0couldnothavemorethan3realssolutions
Answered by Dwaipayan Shikari last updated on 04/Aug/20
Σ_(k=1) ^n x_k ^2 .Σ_(k=1) ^n 1≥(Σ(x_k .1))^2 {Cauchy schwarz inequality}  nΣ_(k=1) ^n x_k ^2 ≥(Σ_(k=1) ^n x_k )^2      {Σ^n (1)=n    It means  n(x_1 ^2 +x_2 ^2 +x_3 ^2 +x_4 ^2 +....)≥(x_1 +x_2 +x_3 +x_4 +.....)^2   (x_1 ^2 +x_2 ^2 +x_3 ^2 +x_4 ^2 +...)≥(((x_1 +x_2 +x_3 +x_4 +......)/( (√n))))^2
nk=1xk2.nk=11(Σ(xk.1))2{Cauchyschwarzinequality}nnk=1xk2(nk=1xk)2{n(1)=nItmeansn(x12+x22+x32+x42+.)(x1+x2+x3+x4+..)2(x12+x22+x32+x42+)(x1+x2+x3+x4+n)2

Leave a Reply

Your email address will not be published. Required fields are marked *