Menu Close

Show-that-x-nx-n-where-n-N-x-R-




Question Number 119048 by Hassen_Timol last updated on 21/Oct/20
Show that :        ⌊x⌋ = ⌊((⌊nx⌋)/n)⌋    where n∈N^∗    x∈R
Showthat:x=nxnwherenNxR
Answered by mr W last updated on 21/Oct/20
say x=m+f with 0≤f<1  ⌊x⌋=m  ⌊nx⌋=nm+⌊nf⌋  0≤nf<n  0≤⌊nf⌋<n  0≤((⌊nf⌋)/n)<1  ⌊((⌊nf⌋)/n)⌋=0  ((⌊nx⌋)/n)=m+((⌊nf⌋)/n)  ⌊((⌊nx⌋)/n)⌋=m+⌊((⌊nf⌋)/n)⌋=m=⌊x⌋  ⇒⌊x⌋=⌊((⌊nx⌋)/n)⌋ proved
sayx=m+fwith0f<1x=mnx=nm+nf0nf<n0nf<n0nfn<1nfn=0nxn=m+nfnnxn=m+nfn=m=xx=nxnproved
Commented by Hassen_Timol last updated on 21/Oct/20
Thank you so much Sir, may god bless you

Leave a Reply

Your email address will not be published. Required fields are marked *