Menu Close

show-that-x-R-x-1-E-x-x-




Question Number 145273 by ArielVyny last updated on 03/Jul/21
show that ∀x∈R x−1≤E(x)≤x
$${show}\:{that}\:\forall{x}\in\mathbb{R}\:{x}−\mathrm{1}\leqslant{E}\left({x}\right)\leqslant{x} \\ $$
Answered by mathmax by abdo last updated on 04/Jul/21
we have [x]≤x<[x]+1 ⇒[x]≤x and x−1<[x] ⇒  x−1<[x]≤x
$$\mathrm{we}\:\mathrm{have}\:\left[\mathrm{x}\right]\leqslant\mathrm{x}<\left[\mathrm{x}\right]+\mathrm{1}\:\Rightarrow\left[\mathrm{x}\right]\leqslant\mathrm{x}\:\mathrm{and}\:\mathrm{x}−\mathrm{1}<\left[\mathrm{x}\right]\:\Rightarrow \\ $$$$\mathrm{x}−\mathrm{1}<\left[\mathrm{x}\right]\leqslant\mathrm{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *