Menu Close

show-that-x-x-2-x-1-is-an-explicit-solution-to-linear-equation-d-2-y-dx-2-2y-x-2-0-




Question Number 98367 by bobhans last updated on 13/Jun/20
show that ϕ(x)=x^2 −x^(−1)  is an explicit   solution to linear equation (d^2 y/dx^2 ) − ((2y)/x^2 ) = 0
showthatφ(x)=x2x1isanexplicitsolutiontolinearequationd2ydx22yx2=0
Commented by john santu last updated on 13/Jun/20
the function ϕ(x)= x^2 −x^(−1)  , ϕ^′ (x)= 2x+x^(−2)  and  ϕ′′(x)=2−2x^(−3)  are defined for all x≠0  substitution of ϕ(x) for y in equation  gives (2−2x^(−3) )−(2/x^2 )(x^2 −x^(−1) )=  (2−2x^(−3) )−(2−2x^(−3) ) = 0 . since this  is valid for any x≠0 , the function  ϕ(x)=x^2 −x^(−1)  is an explicit solution  for (d^2 y/dx^2 ) −((2y)/x^2 ) = 0 on (−∞,0) ∪(0,∞)
thefunctionφ(x)=x2x1,φ(x)=2x+x2andφ(x)=22x3aredefinedforallx0substitutionofφ(x)foryinequationgives(22x3)2x2(x2x1)=(22x3)(22x3)=0.sincethisisvalidforanyx0,thefunctionφ(x)=x2x1isanexplicitsolutionford2ydx22yx2=0on(,0)(0,)
Commented by bobhans last updated on 13/Jun/20
thank you both
thankyouboth
Answered by abdomathmax last updated on 13/Jun/20
ϕ(x)=x^2 −(1/x) ⇒ϕ^′ (x)=2x+(1/x^2 ) and  ϕ^(′′) (x) =2−((2x)/x^4 ) =2−(2/x^3 ) ⇒ϕ^(′′) (x)−(2/x^2 )ϕ(x)  =2−(2/x^3 )−(2/x^2 )(x^2 −(1/x))  =2−(2/x^3 )−2 +(2/x^3 ) =0 so ϕ is solution of?(de)  y^(′′)  −((2y)/x^2 ) =0
φ(x)=x21xφ(x)=2x+1x2andφ(x)=22xx4=22x3φ(x)2x2φ(x)=22x32x2(x21x)=22x32+2x3=0soφissolutionof?(de)y2yx2=0

Leave a Reply

Your email address will not be published. Required fields are marked *