show-that-x-x-2-x-1-is-an-explicit-solution-to-linear-equation-d-2-y-dx-2-2y-x-2-0- Tinku Tara June 4, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 98367 by bobhans last updated on 13/Jun/20 showthatφ(x)=x2−x−1isanexplicitsolutiontolinearequationd2ydx2−2yx2=0 Commented by john santu last updated on 13/Jun/20 thefunctionφ(x)=x2−x−1,φ′(x)=2x+x−2andφ″(x)=2−2x−3aredefinedforallx≠0substitutionofφ(x)foryinequationgives(2−2x−3)−2x2(x2−x−1)=(2−2x−3)−(2−2x−3)=0.sincethisisvalidforanyx≠0,thefunctionφ(x)=x2−x−1isanexplicitsolutionford2ydx2−2yx2=0on(−∞,0)∪(0,∞) Commented by bobhans last updated on 13/Jun/20 thankyouboth Answered by abdomathmax last updated on 13/Jun/20 φ(x)=x2−1x⇒φ′(x)=2x+1x2andφ″(x)=2−2xx4=2−2x3⇒φ″(x)−2x2φ(x)=2−2x3−2x2(x2−1x)=2−2x3−2+2x3=0soφissolutionof?(de)y″−2yx2=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-x-2-x-x-3-10x-4-find-x-Next Next post: Determine-n-such-that-1001n-1-is-perfect-cube- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.