Menu Close

show-that-x-y-x-y-




Question Number 119057 by mathocean1 last updated on 21/Oct/20
show that  ∣x+y∣≤∣x∣+∣y∣
showthatx+y∣⩽∣x+y
Answered by Bird last updated on 21/Oct/20
(∣x∣+∣y∣)^2 −∣x+y∣^2 =  x^2 +2∣xy∣+y^2 −x^2 −2xy−y^2   =2(∣xy∣−xy)≥0 due to xy≤∣xy∣  ∣x∣+∣y∣≥0 and ∣x+y∣≥0 ⇒  ∣x+y∣≤∣x∣+∣y∣
(x+y)2x+y2=x2+2xy+y2x22xyy2=2(xyxy)0duetoxy⩽∣xyx+y∣⩾0andx+y∣⩾0x+y∣⩽∣x+y
Commented by mathocean1 last updated on 25/Oct/20
Thank you all sirs.
Thankyouallsirs.
Answered by floor(10²Eta[1]) last updated on 22/Oct/20
step 1.  lemma:  −∣x∣≤x≤∣x∣  proof:  case 1.  if x≥0 then x=∣x∣≤∣x∣  but also x≥0≥−∣x∣.  case 2.  if x≤0 then x≤0≤∣x∣  but x=−(−x)=−∣x∣≥−∣x∣  step 2.  by lemma: −∣a∣≤a≤∣a∣  a≤∣a∣⇒a+b≤∣a∣+b≤∣a∣+∣b∣  a≥−∣a∣⇒a+b≥b−∣a∣≥−∣b∣−∣a∣  ⇒a+b≥−(∣a∣+∣b∣)  ⇒−(∣a∣+∣b∣)≤a+b≤∣a∣+∣b∣  step 3.  to show ∣a+b∣≤∣a∣+∣b∣ do by cases:  case 1.  a+b≥0 then ∣a+b∣=a+b≤∣a∣+∣b∣.  case 2  a+b≤0 then   ∣a+b∣=−(a+b)≤−(−(∣a∣+∣b∣))=∣a∣+∣b∣.  Proved.
step1.lemma:x∣⩽x⩽∣xproof:case1.ifx0thenx=∣x∣⩽∣xbutalsox0x.case2.ifx0thenx0⩽∣xbutx=(x)=x∣⩾xstep2.bylemma:a∣⩽a⩽∣aa⩽∣a∣⇒a+b⩽∣a+b⩽∣a+baa∣⇒a+bba∣⩾baa+b(a+b)(a+b)a+b⩽∣a+bstep3.toshowa+b∣⩽∣a+bdobycases:case1.a+b0thena+b∣=a+b⩽∣a+b.case2a+b0thena+b∣=(a+b)((a+b))=∣a+b.Proved.
Commented by mathocean1 last updated on 25/Oct/20
Thanks.
Thanks.
Answered by 1549442205PVT last updated on 22/Oct/20
∣x+y∣≤∣x∣+∣y∣⇔∣x+y∣^2 ≤(∣x∣+∣y∣)^2   ⇔x^2 +2xy+y^2 ≤x^2 +2∣xy∣+y^2   ⇔xy≤∣xy∣.The last inequality is always  true,so the given inequality is true  .The equality ocurrs if and only if   xy≥0(q.e.d)
x+y∣⩽∣x+y∣⇔∣x+y2(x+y)2x2+2xy+y2x2+2xy+y2xy⩽∣xy.Thelastinequalityisalwaystrue,sothegiveninequalityistrue.Theequalityocurrsifandonlyifxy0(q.e.d)
Commented by mathocean1 last updated on 25/Oct/20
thanks.
thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *