Question Number 162189 by SANOGO last updated on 27/Dec/21

Commented by Ar Brandon last updated on 27/Dec/21
![I=∫_(−1) ^1 (√((1−t)/(1+t)))dt=∫_(−1) ^1 ((1−t)/( (√(1−t^2 ))))dt =∫_(−1) ^1 (dt/( (√(1−t^2 ))))−∫(t/( (√(1−t^2 ))))dt =[arcsin(t)]_(−1) ^1 −[(√(1−t^2 ))]_(−1) ^1 =π](https://www.tinkutara.com/question/Q162221.png)
Commented by SANOGO last updated on 28/Dec/21

Answered by mathmax by abdo last updated on 27/Dec/21
![I=∫_(−1) ^1 (√((1−t)/(1+t)))dt ⇒I=∫_(−1) ^0 (√((1−t)/(1+t)))dt +∫_0 ^1 (√((1−t)/(1+t)))dt ∫_(−1) ^0 (√((1−t)/(1+t)))dt =_(t=−u) −∫_0 ^1 (√((1+u)/(1−u)))du =_(u=cosθ) −∫_(π/2) ^0 (√((2cos^2 ((θ/2)))/(2sin^2 ((θ/2)))))(−sinθ)dθ =−∫_0 ^(π/2) ((cos((θ/2)))/(sin((θ/2))))×2sin((θ/2))cos((θ/2))dθ =−2∫_0 ^(π/2) cos^2 ((θ/2))dθ =−∫_0 ^(π/2) (1+cosθ)dθ =−(π/2)−[sinθ]_0 ^(π/2) =−(π/2)−1 ∫_0 ^1 (√((1−t)/(1+t)))dt =_(t=cosθ) ∫_(π/2) ^0 (√((1−cosθ)/(1+cosθ)))(−sinθ)dθ =∫_0 ^(π/2) (√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2)))))sinθ dθ =∫_0 ^(π/2) ((sin((θ/2)))/(cos((θ/2))))×2sin((θ/2))cos((θ/2))dθ =2∫_0 ^(π/2) sin^2 ((θ/2))dθ =∫_0 ^(π/2) (1−cos(θ))dθ =(π/2)−[sinθ]_0 ^(π/2) =(π/2)−1 ⇒ I=−(π/2)−1+(π/2)−1 ⇒I =−2](https://www.tinkutara.com/question/Q162201.png)
Commented by SANOGO last updated on 27/Dec/21
