Menu Close

show-the-converge-nce-and-calculate-1-1-1-t-1-t-dt-




Question Number 162189 by SANOGO last updated on 27/Dec/21
show the converge^ nce and calculate  ∫_(−1) ^1 (√((1−t)/(1+t))) dt
showtheconvergenceandcalculate111t1+tdt
Commented by Ar Brandon last updated on 27/Dec/21
I=∫_(−1) ^1 (√((1−t)/(1+t)))dt=∫_(−1) ^1 ((1−t)/( (√(1−t^2 ))))dt     =∫_(−1) ^1 (dt/( (√(1−t^2 ))))−∫(t/( (√(1−t^2 ))))dt     =[arcsin(t)]_(−1) ^1 −[(√(1−t^2 ))]_(−1) ^1 =π
I=111t1+tdt=111t1t2dt=11dt1t2t1t2dt=[arcsin(t)]11[1t2]11=π
Commented by SANOGO last updated on 28/Dec/21
thank you
thankyou
Answered by mathmax by abdo last updated on 27/Dec/21
I=∫_(−1) ^1 (√((1−t)/(1+t)))dt  ⇒I=∫_(−1) ^0 (√((1−t)/(1+t)))dt +∫_0 ^1 (√((1−t)/(1+t)))dt  ∫_(−1) ^0 (√((1−t)/(1+t)))dt =_(t=−u)    −∫_0 ^1 (√((1+u)/(1−u)))du  =_(u=cosθ)    −∫_(π/2) ^0 (√((2cos^2 ((θ/2)))/(2sin^2 ((θ/2)))))(−sinθ)dθ  =−∫_0 ^(π/2)   ((cos((θ/2)))/(sin((θ/2))))×2sin((θ/2))cos((θ/2))dθ  =−2∫_0 ^(π/2) cos^2 ((θ/2))dθ =−∫_0 ^(π/2) (1+cosθ)dθ  =−(π/2)−[sinθ]_0 ^(π/2)  =−(π/2)−1  ∫_0 ^1 (√((1−t)/(1+t)))dt =_(t=cosθ)    ∫_(π/2) ^0 (√((1−cosθ)/(1+cosθ)))(−sinθ)dθ  =∫_0 ^(π/2) (√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2)))))sinθ dθ  =∫_0 ^(π/2)  ((sin((θ/2)))/(cos((θ/2))))×2sin((θ/2))cos((θ/2))dθ  =2∫_0 ^(π/2)  sin^2 ((θ/2))dθ =∫_0 ^(π/2) (1−cos(θ))dθ  =(π/2)−[sinθ]_0 ^(π/2)  =(π/2)−1 ⇒  I=−(π/2)−1+(π/2)−1 ⇒I =−2
I=111t1+tdtI=101t1+tdt+011t1+tdt101t1+tdt=t=u011+u1udu=u=cosθπ202cos2(θ2)2sin2(θ2)(sinθ)dθ=0π2cos(θ2)sin(θ2)×2sin(θ2)cos(θ2)dθ=20π2cos2(θ2)dθ=0π2(1+cosθ)dθ=π2[sinθ]0π2=π21011t1+tdt=t=cosθπ201cosθ1+cosθ(sinθ)dθ=0π22sin2(θ2)2cos2(θ2)sinθdθ=0π2sin(θ2)cos(θ2)×2sin(θ2)cos(θ2)dθ=20π2sin2(θ2)dθ=0π2(1cos(θ))dθ=π2[sinθ]0π2=π21I=π21+π21I=2
Commented by SANOGO last updated on 27/Dec/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *