Menu Close

Show-whether-n-1-x-2-3-n-2-x-2-is-uniformly-convegence-for-real-value-of-x-




Question Number 153518 by Tawa11 last updated on 08/Sep/21
Show whether   Σ_(n  =  1) ^∞  ((x^2 /(3    +   n^2 x^2 )))     is uniformly convegence for real  value of x.
Showwhethern=1(x23+n2x2)isuniformlyconvegenceforrealvalueofx.
Answered by puissant last updated on 08/Sep/21
let f_n (x)=(x^2 /(3+n^2 x^2 ))  f_n ((1/n))=((((1/n))^2 )/(3+n^2 ×(1/n^2 ))) = ((1/n^2 )/4) = (1/(4n^2 ))..  ∣∣f_n ∣∣_∞ ≥(1/(4n^2 )) → 0 when n→∞  hence  Σ_(n=1) ^∞ ((x^2 /(3+n^2 x^2 ))) is uniformly   convervence..
letfn(x)=x23+n2x2fn(1n)=(1n)23+n2×1n2=1n24=14n2..∣∣fn14n20whennhencen=1(x23+n2x2)isuniformlyconvervence..
Commented by Tawa11 last updated on 08/Sep/21
God bless you sir. I appreciate.
Godblessyousir.Iappreciate.
Answered by mindispower last updated on 08/Sep/21
=Σ_(n≥1) (1/((n^2 +(3/x^2 )))),x=((√3)/y)  =Σ_(n≥1) (1/((n^2 +y^2 )))  =Σ_(n≥0) (1/((n+1+iy)(n+1−iy)))=((Ψ(1+iy)−Ψ(1−iy))/(2iy))  Ψ(1+iy)=Ψ(iy)+(1/(iy))  =−(1/(2y^2 ))−((Ψ(1−iy)−Ψ(iy))/(2iy))  =−(1/(2y^2 ))−((πcot(iπy))/(2iy))=−(1/(2y^2 ))+(π/(2y))th(πy)  Σ_(n≥1) (x^2 /(n^2 x^2 +3))=−(3/2)x^2 +(π/2)((√3)/x)th(((π(√3))/x))
=n11(n2+3x2),x=3y=n11(n2+y2)=n01(n+1+iy)(n+1iy)=Ψ(1+iy)Ψ(1iy)2iyΨ(1+iy)=Ψ(iy)+1iy=12y2Ψ(1iy)Ψ(iy)2iy=12y2πcot(iπy)2iy=12y2+π2yth(πy)n1x2n2x2+3=32x2+π23xth(π3x)
Commented by Tawa11 last updated on 08/Sep/21
God bless you sir.  I appreciate.
Godblessyousir.Iappreciate.
Commented by Tawa11 last updated on 08/Sep/21
What is  th  sir.
Whatisthsir.
Commented by mindispower last updated on 08/Sep/21
th(x)=((sh(x))/(ch(x)))=((e^x −e^(−x) )/(e^x +e^(−x) ))
th(x)=sh(x)ch(x)=exexex+ex
Commented by Tawa11 last updated on 08/Sep/21
Ohh. Thanks sir
Ohh.Thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *