Menu Close

similar-question-reposted-if-a-3-b-b-3-c-c-3-a-with-a-b-c-and-a-b-c-R-find-abc-2-




Question Number 161366 by mr W last updated on 17/Dec/21
[similar question reposted]  if a+(3/b)=b+(3/c)=c+(3/a) with a≠b≠c  and a,b,c ∈ R. find (abc)^2 =?
[similarquestionreposted]ifa+3b=b+3c=c+3awithabcanda,b,cR.find(abc)2=?
Answered by 1549442205PVT last updated on 18/Dec/21
From the hypothesis we have:  a+(3/b)=c+(3/a)⇒c=((a^2 −3)/a)+(3/b)(1)⇒(3/c)=((3ab)/(a^2 b+3a−3b))  ⇒a+(3/b)=b+((3ab)/(a^2 b+3a−3b))⇒((ab+3−b^2 )/b)=((3ab)/(a^2 b+3a−3b))  ⇔a^3 b^2 +3a^2 b−a^2 b^3 +3a^2 b+9a−3ab^2 −3ab^2 −9b+3b^3 =3ab^2   After simplifycation we obtain  a^3 b^2 −(b^3 −6b)a^2 −(9b^2 −9)a+3b^3 −9b  =(a−b)(a^2 b^2 +6ab−3b^2 +9)=0.Since a≠b  ,we get a^2 b^2 +6ab−3b^2 +9=0  ⇔(a^2 −3)b^2 +6ab+9=0.  •if a^2 −3=0⇔a=±(√3) then b=((−3)/(±2(√3)))=((∓(√3))/2)  ⇒c=∓2(√3)⇒abc=±3(√3) ⇒(abc)^2 =27  •if a^2 −3≠0.Then △′=9a^2 −9a^2 +27=27,so  b=((−3a±3(√3))/(a^2 −3)).Hence from(1)weget  bc=3+((a^2 −3)/a).b=3+((−3a±3(√3))/a)  ⇒abc=3a−3a±3(√3)=±3(√3)  ⇒(abc)^2 =27
Fromthehypothesiswehave:a+3b=c+3ac=a23a+3b(1)3c=3aba2b+3a3ba+3b=b+3aba2b+3a3bab+3b2b=3aba2b+3a3ba3b2+3a2ba2b3+3a2b+9a3ab23ab29b+3b3=3ab2Aftersimplifycationweobtaina3b2(b36b)a2(9b29)a+3b39b=(ab)(a2b2+6ab3b2+9)=0.Sinceab,wegeta2b2+6ab3b2+9=0(a23)b2+6ab+9=0.ifa23=0a=±3thenb=3±23=32c=23abc=±33(abc)2=27ifa230.Then=9a29a2+27=27,sob=3a±33a23.Hencefrom(1)wegetbc=3+a23a.b=3+3a±33aabc=3a3a±33=±33(abc)2=27
Commented by mr W last updated on 17/Dec/21
thanks sir!
thankssir!
Commented by 1549442205PVT last updated on 18/Dec/21
Thank you Sir Mr.W ,i mistake and corrected
ThankyouSirMr.W,imistakeandcorrected
Answered by mr W last updated on 17/Dec/21
a+(3/b)=b+(3/c)=c+(3/a)=k say  ⇒b=(3/(k−a))  ⇒c=k−(3/a)=((ka−3)/a)  (3/(k−a))+((3a)/(ka−3))=k  3(ka−3)+3a(k−a)=k(k−a)(ka−3)  ⇒(k^2 −3)(a^2 −ka+3)=0  case 1: a^2 −ka+3=0  k=((a^2 +3)/a)=a+(3/a)  ⇒b=(3/(k−a))=(3/(a+(3/a)−a))=a  ⇒c=k−(3/a)=a+(3/a)−(3/a)=a  that means case 1 is not true, since  it leads to a=b=c.  case 2: k^2 −3=0 i.e. k=±(√3)  with k=(√3)  ⇒b=(3/(k−a))=(3/( (√3)−a))≠a ✓  ⇒c=((ka−3)/a)=(((√3)a−3)/a)=−(((√3)((√3)−a))/a)≠b≠a ✓  ⇒abc=a×(3/( (√3)−a))×(−(((√3)((√3)−a))/a))=−3(√3)  similarly with k=−(√3)  ⇒abc=3(√3)  that means we always have   abc=±3(√3)  i.e. (abc)^2 =27.    generally  if a+(n/b)=b+(n/c)=c+(n/a) and a≠b≠c,  then (abc)^2 =n^3 .
a+3b=b+3c=c+3a=ksayb=3kac=k3a=ka3a3ka+3aka3=k3(ka3)+3a(ka)=k(ka)(ka3)(k23)(a2ka+3)=0case1:a2ka+3=0k=a2+3a=a+3ab=3ka=3a+3aa=ac=k3a=a+3a3a=athatmeanscase1isnottrue,sinceitleadstoa=b=c.case2:k23=0i.e.k=±3withk=3b=3ka=33aac=ka3a=3a3a=3(3a)abaabc=a×33a×(3(3a)a)=33similarlywithk=3abc=33thatmeanswealwayshaveabc=±33i.e.(abc)2=27.generallyifa+nb=b+nc=c+naandabc,then(abc)2=n3.
Commented by Tawa11 last updated on 17/Dec/21
Great sir.
Greatsir.

Leave a Reply

Your email address will not be published. Required fields are marked *