Question Number 147557 by mathdanisur last updated on 21/Jul/21
$${Simlify} \\ $$$$\left(\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} -\:\left(\frac{\mathrm{1}−\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}−\sqrt{{x}}}\right)^{\mathrm{2}} \\ $$
Answered by Rasheed.Sindhi last updated on 21/Jul/21
$$\left(\underset{{a}} {\underbrace{\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:}}−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} -\:\left(\underset{{b}} {\underbrace{\frac{\mathrm{1}−\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}−\sqrt{{x}}}\right)^{\mathrm{2}} \\ $$$$\left({a}−\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} −\left({b}−\frac{\mathrm{1}}{{b}}\right)^{\mathrm{2}} \\ $$$$=\left\{\left({a}−\frac{\mathrm{1}}{{a}}\right)−\left({b}−\frac{\mathrm{1}}{{b}}\right)\right\}\left\{\left({a}−\frac{\mathrm{1}}{{a}}\right)+\left({b}−\frac{\mathrm{1}}{{b}}\right)\right\} \\ $$$$=\left({a}−{b}−\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right)\left({a}+{b}−\frac{\mathrm{1}}{{a}}−\frac{\mathrm{1}}{{b}}\right) \\ $$$$=\left({a}−{b}+\frac{{a}−{b}}{{ab}}\right)\left({a}+{b}−\frac{{a}+{b}}{{ab}}\right) \\ $$$$=\left({a}−{b}\right)\left({a}+{b}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{ab}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{ab}}\right) \\ $$$$=\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\:\mathrm{1}−\left(\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{{b}}\right)^{\mathrm{2}} \:\right) \\ $$$$\:\left\{\left(\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}−\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\right)^{\mathrm{2}} \right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:×\left\{\mathrm{1}−\left(\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} \left(\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}−\sqrt{{x}}}\right)^{\mathrm{2}} \right\} \\ $$$$\:=\left\{\frac{\left(\mathrm{1}+\sqrt{{x}}\right)^{\mathrm{2}} −\left(\mathrm{1}−\sqrt{{x}}\right)^{\mathrm{2}} }{\:\mathrm{1}+{x}}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:×\left\{\mathrm{1}−\left(\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} \left(\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}−\sqrt{{x}}}\right)^{\mathrm{2}} \right\} \\ $$$$\:=\left\{\frac{\cancel{\mathrm{1}}+\cancel{{x}}+\mathrm{2}\sqrt{{x}}−\cancel{\mathrm{1}}−\cancel{{x}}+\mathrm{2}\sqrt{{x}}}{\:\mathrm{1}+{x}}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:×\left\{\mathrm{1}−\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\right\} \\ $$$$=\frac{\mathrm{4}\sqrt{{x}}}{\mathrm{1}+{x}}×\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} −\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}\sqrt{{x}}}{\mathrm{1}+{x}}×\frac{\mathrm{1}−\mathrm{2}{x}+{x}^{\mathrm{2}} −\mathrm{1}−\mathrm{2}{x}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}\sqrt{{x}}}{\mathrm{1}+{x}}×\frac{−\mathrm{4}{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }=−\frac{\mathrm{16}{x}\sqrt{{x}}}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$
Commented by mathdanisur last updated on 21/Jul/21
$${Thankyou}\:{Sir},\:{please}\:{note}\:{the}\:{answer} \\ $$$${too}\:{please}\:{if}\:{possible} \\ $$
Commented by mathdanisur last updated on 22/Jul/21
$${thank}\:{you}\:{Sir} \\ $$
Answered by liberty last updated on 22/Jul/21
$$\:\sqrt{{x}}\:=\:{u}\: \\ $$$$\Rightarrow\left(\frac{\mathrm{1}+{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}−\frac{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}+{u}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}−{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}−\frac{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}−{u}}\right)^{\mathrm{2}} = \\ $$$$\left(\frac{\mathrm{1}+{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}−\frac{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}+{u}}+\frac{\mathrm{1}−{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}−\frac{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}−{u}}\:\right)\left(\frac{\mathrm{1}+{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}−\frac{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}+{u}}−\frac{\mathrm{1}−{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}+\frac{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}−{u}}\:\right) \\ $$$$=\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:−\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\:\left(\frac{\mathrm{1}}{\mathrm{1}+{u}}+\frac{\mathrm{1}}{\mathrm{1}−{u}}\right)\right)\left(\frac{\mathrm{2}{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{1}−{u}}−\frac{\mathrm{1}}{\mathrm{1}+{u}}\right)\right) \\ $$$$=\:\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}−\frac{\mathrm{2}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}−{u}^{\mathrm{2}} }\:\right)\left(\frac{\mathrm{2}{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}+\frac{\mathrm{2}{u}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{1}−{u}^{\mathrm{2}} }\:\right) \\ $$$$=\:\left(\frac{\mathrm{2}−\mathrm{2}{u}^{\mathrm{2}} −\mathrm{2}−\mathrm{2}{u}^{\mathrm{2}} }{\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\right)\left(\frac{\mathrm{2}{u}−\mathrm{2}{u}^{\mathrm{3}} +\mathrm{2}{u}+\mathrm{2}{u}^{\mathrm{3}} }{\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:\right) \\ $$$$=\:\left(\frac{−\mathrm{4}{u}^{\mathrm{2}} }{\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\right)\left(\frac{\mathrm{4}{u}}{\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\right) \\ $$$$=\:\frac{−\mathrm{16}{u}^{\mathrm{3}} }{\left(\mathrm{1}−{u}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}+{u}^{\mathrm{2}} \right)} \\ $$$$=\:\frac{−\mathrm{16}{x}\sqrt{{x}}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}\:. \\ $$
Commented by mathdanisur last updated on 22/Jul/21
$${thank}\:{you}\:{Sir} \\ $$