Menu Close

Simlify-1-x-1-x-1-x-1-x-2-1-x-1-x-1-x-1-x-2-




Question Number 147557 by mathdanisur last updated on 21/Jul/21
Simlify  (((1+(√x))/( (√(1+x)))) − ((√(1+x))/(1+(√x))))^2 - (((1−(√x))/( (√(1+x)))) − ((√(1+x))/(1−(√x))))^2
Simlify(1+x1+x1+x1+x)2(1x1+x1+x1x)2
Answered by Rasheed.Sindhi last updated on 21/Jul/21
(((1+(√x))/( (√(1+x)))) _(a) − ((√(1+x))/(1+(√x))))^2 - (((1−(√x))/( (√(1+x))))_(b)  − ((√(1+x))/(1−(√x))))^2   (a−(1/a))^2 −(b−(1/b))^2   ={(a−(1/a))−(b−(1/b))}{(a−(1/a))+(b−(1/b))}  =(a−b−(1/a)+(1/b))(a+b−(1/a)−(1/b))  =(a−b+((a−b)/(ab)))(a+b−((a+b)/(ab)))  =(a−b)(a+b)(1+(1/(ab)))(1−(1/(ab)))  =(a^2 −b^2 )( 1−((1/a))^2 ((1/b))^2  )   {(((1+(√x))/( (√(1+x)))))^2 −(((1−(√x))/( (√(1+x)))))^2 }                    ×{1−(((√(1+x))/(1+(√x))))^2 (((√(1+x))/(1−(√x))))^2 }   ={(((1+(√x))^2 −(1−(√x))^2 )/( 1+x))}                    ×{1−(((√(1+x))/(1+(√x))))^2 (((√(1+x))/(1−(√x))))^2 }   ={((1+x+2(√x)−1−x+2(√x))/( 1+x))}                    ×{1−(((1+x)^2 )/((1−x)^2 ))}  =((4(√x))/(1+x))×(((1−x)^2 −(1+x)^2 )/((1−x)^2 ))  =((4(√x))/(1+x))×((1−2x+x^2 −1−2x−x^2 )/((1−x)^2 ))  =((4(√x))/(1+x))×((−4x)/((1−x)^2 ))=−((16x(√x))/((1+x)(1−x)^2 ))
(1+x1+xa1+x1+x)2(1x1+xb1+x1x)2(a1a)2(b1b)2={(a1a)(b1b)}{(a1a)+(b1b)}=(ab1a+1b)(a+b1a1b)=(ab+abab)(a+ba+bab)=(ab)(a+b)(1+1ab)(11ab)=(a2b2)(1(1a)2(1b)2){(1+x1+x)2(1x1+x)2}×{1(1+x1+x)2(1+x1x)2}={(1+x)2(1x)21+x}×{1(1+x1+x)2(1+x1x)2}={1+x+2x1x+2x1+x}×{1(1+x)2(1x)2}=4x1+x×(1x)2(1+x)2(1x)2=4x1+x×12x+x212xx2(1x)2=4x1+x×4x(1x)2=16xx(1+x)(1x)2
Commented by mathdanisur last updated on 21/Jul/21
Thankyou Sir, please note the answer  too please if possible
ThankyouSir,pleasenotetheanswertoopleaseifpossible
Commented by mathdanisur last updated on 22/Jul/21
thank you Sir
thankyouSir
Answered by liberty last updated on 22/Jul/21
 (√x) = u   ⇒(((1+u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1+u)))^2 −(((1−u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1−u)))^2 =  (((1+u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1+u))+((1−u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1−u)) )(((1+u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1+u))−((1−u)/( (√(1+u^2 ))))+((√(1+u^2 ))/(1−u)) )  =((2/( (√(1+u^2 )))) −(√(1+u^2 )) ((1/(1+u))+(1/(1−u))))(((2u)/( (√(1+u^2 )))) +(√(1+u^2 ))((1/(1−u))−(1/(1+u))))  = ((2/( (√(1+u^2 ))))−((2(√(1+u^2 )))/(1−u^2 )) )(((2u)/( (√(1+u^2 ))))+((2u(√(1+u^2 )))/(1−u^2 )) )  = (((2−2u^2 −2−2u^2 )/((1−u^2 )(√(1+u^2 )))))(((2u−2u^3 +2u+2u^3 )/((1−u^2 )(√(1+u^2 )))) )  = (((−4u^2 )/((1−u^2 )(√(1+u^2 )))))(((4u)/((1−u^2 )(√(1+u^2 )))))  = ((−16u^3 )/((1−u^2 )^2 (1+u^2 )))  = ((−16x(√x))/((1−x)^2 (1+x))) .
x=u(1+u1+u21+u21+u)2(1u1+u21+u21u)2=(1+u1+u21+u21+u+1u1+u21+u21u)(1+u1+u21+u21+u1u1+u2+1+u21u)=(21+u21+u2(11+u+11u))(2u1+u2+1+u2(11u11+u))=(21+u221+u21u2)(2u1+u2+2u1+u21u2)=(22u222u2(1u2)1+u2)(2u2u3+2u+2u3(1u2)1+u2)=(4u2(1u2)1+u2)(4u(1u2)1+u2)=16u3(1u2)2(1+u2)=16xx(1x)2(1+x).
Commented by mathdanisur last updated on 22/Jul/21
thank you Sir
thankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *