Question Number 38517 by math khazana by abdo last updated on 26/Jun/18
$${simlify} \\ $$$${A}=\:\frac{\mathrm{1}}{\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)^{\mathrm{4}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} } \\ $$$${B}\:=\:\frac{\mathrm{1}}{\left(\mathrm{3}−\sqrt{\mathrm{2}}\right)^{\mathrm{6}} }\:+\frac{\mathrm{1}}{\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)^{\mathrm{6}} } \\ $$
Answered by MJS last updated on 26/Jun/18
$${A}=\frac{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} +\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)^{\mathrm{4}} }{\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)^{\mathrm{4}} \left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} }=\frac{\left(\mathrm{9}+\mathrm{4}\sqrt{\mathrm{5}}\right)^{\mathrm{2}} +\left(\mathrm{9}−\mathrm{4}\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\left(\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\right)^{\mathrm{4}} }= \\ $$$$=\frac{\mathrm{81}+\mathrm{72}\sqrt{\mathrm{5}}+\mathrm{80}+\mathrm{81}−\mathrm{72}\sqrt{\mathrm{5}}+\mathrm{80}}{\left(\mathrm{4}−\mathrm{5}\right)^{\mathrm{4}} }=\mathrm{322} \\ $$$${B}=\frac{\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)^{\mathrm{6}} +\left(\mathrm{3}−\sqrt{\mathrm{2}}\right)^{\mathrm{6}} }{\left(\mathrm{3}−\sqrt{\mathrm{2}}\right)^{\mathrm{6}} \left(\mathrm{3}+\sqrt{\mathrm{2}}\right)^{\mathrm{6}} }=\frac{\left(\mathrm{11}+\mathrm{6}\sqrt{\mathrm{2}}\right)^{\mathrm{3}} +\left(\mathrm{11}−\mathrm{6}\sqrt{\mathrm{2}}\right)^{\mathrm{3}} }{\left(\left(\mathrm{3}−\sqrt{\mathrm{2}}\right)\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)\right)^{\mathrm{6}} }= \\ $$$$=\frac{\mathrm{1331}+\mathrm{2178}\sqrt{\mathrm{2}}+\mathrm{2376}+\mathrm{432}\sqrt{\mathrm{2}}+\mathrm{1331}−\mathrm{2178}\sqrt{\mathrm{2}}+\mathrm{2376}−\mathrm{432}\sqrt{\mathrm{2}}}{\left(\mathrm{9}−\mathrm{2}\right)^{\mathrm{6}{q}} }= \\ $$$$=\frac{\mathrm{7414}}{\mathrm{117649}} \\ $$
Commented by math khazana by abdo last updated on 26/Jun/18
$${thank}\:{you}\:{sir}. \\ $$
Answered by math1967 last updated on 27/Jun/18
$${let}\:{x}=\frac{\mathrm{1}}{\mathrm{2}−\sqrt{\mathrm{5}}}=−\left(\mathrm{2}+\sqrt{\mathrm{5}}\:\right) \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{5}}}=−\left(\mathrm{2}−\sqrt{\mathrm{5}}\right) \\ $$$$\therefore{xg}=\left(\mathrm{4}−\mathrm{5}\right)=−\mathrm{1} \\ $$$${x}+{g}=−\mathrm{4} \\ $$$$\therefore{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\left\{\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}\right\}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$$=\left\{\mathrm{16}+\mathrm{2}\right\}^{\mathrm{2}} −\mathrm{2}=\mathrm{324}−\mathrm{2}=\mathrm{322} \\ $$