Menu Close

Simplify-1-2-2-2-2-3-3-2-4-n-2-n-1-2-n-1-to-n-2-n-2-




Question Number 161860 by Rasheed.Sindhi last updated on 23/Dec/21
                         Simplify  ((1^2 ∙2!+2^2 ∙3!+3^2 ∙4!+∙∙∙+n^2 (n+1)!−2)/((n+1)!))                                      to                               n^2 +n−2
Simplify122!+223!+324!++n2(n+1)!2(n+1)!ton2+n2
Answered by aleks041103 last updated on 23/Dec/21
Statement:  n^2 +n−2=(1/((n+1)!))(Σ_(i=1) ^n i^2 (i+1)! − 2)  We′ll use proof by induction:  for n=0:  (1/((n+1)!))(Σ_(i=1) ^n i^2 (i+1)! − 2)=(1/(1!))(0−2)=−2  0^2 +0−2=−2  for n=1:  (1/((n+1)!))(Σ_(i=1) ^n i^2 (i+1)! − 2)=(1/(2!))(1^2 ×2!−2)=0  1^2 +1−2=0  for n=k:  (1/((k+1)!))(Σ_(i=1) ^k i^2 (i+1)! − 2)=k^2 +k−2  for n=k+1:  (1/((k+2)!))(Σ_(i=1) ^(k+1) i^2 (i+1)! − 2)=  =(1/(k+2))((1/((k+1)!))(Σ_(i=1) ^(k+1) i^2 (i+1)! − 2))=  =(1/(k+2))((1/((k+1)!))(Σ_(i=1) ^k i^2 (i+1)! − 2)+(((k+1)^2 (k+2)!)/((k+1)!)))=  =(1/(k+2))(k^2 +k−2+(k+2)(k+1)^2 )=  =((k^2 +k−2)/(k+2))+(k+1)^2 =  =(((k+2)(k−1))/(k+2))+(k+1)^2 =  =(k+1)^2 +k−1=  =(k+1)^2 +(k+1)−2  QED
Statement:n2+n2=1(n+1)!(ni=1i2(i+1)!2)Welluseproofbyinduction:forn=0:1(n+1)!(ni=1i2(i+1)!2)=11!(02)=202+02=2forn=1:1(n+1)!(ni=1i2(i+1)!2)=12!(12×2!2)=012+12=0forn=k:1(k+1)!(ki=1i2(i+1)!2)=k2+k2forn=k+1:1(k+2)!(k+1i=1i2(i+1)!2)==1k+2(1(k+1)!(k+1i=1i2(i+1)!2))==1k+2(1(k+1)!(ki=1i2(i+1)!2)+(k+1)2(k+2)!(k+1)!)==1k+2(k2+k2+(k+2)(k+1)2)==k2+k2k+2+(k+1)2==(k+2)(k1)k+2+(k+1)2==(k+1)2+k1==(k+1)2+(k+1)2QED
Commented by Rasheed.Sindhi last updated on 24/Dec/21
Nice proof sir!   But the question is about simplification,  not about proof.
Niceproofsir!Butthequestionisaboutsimplification,notaboutproof.

Leave a Reply

Your email address will not be published. Required fields are marked *