Simplify-1-2-2-2-2-3-3-2-4-n-2-n-1-2-n-1-to-n-2-n-2- Tinku Tara June 4, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 161860 by Rasheed.Sindhi last updated on 23/Dec/21 Simplify12⋅2!+22⋅3!+32⋅4!+⋅⋅⋅+n2(n+1)!−2(n+1)!ton2+n−2 Answered by aleks041103 last updated on 23/Dec/21 Statement:n2+n−2=1(n+1)!(∑ni=1i2(i+1)!−2)We′lluseproofbyinduction:forn=0:1(n+1)!(∑ni=1i2(i+1)!−2)=11!(0−2)=−202+0−2=−2forn=1:1(n+1)!(∑ni=1i2(i+1)!−2)=12!(12×2!−2)=012+1−2=0forn=k:1(k+1)!(∑ki=1i2(i+1)!−2)=k2+k−2forn=k+1:1(k+2)!(∑k+1i=1i2(i+1)!−2)==1k+2(1(k+1)!(∑k+1i=1i2(i+1)!−2))==1k+2(1(k+1)!(∑ki=1i2(i+1)!−2)+(k+1)2(k+2)!(k+1)!)==1k+2(k2+k−2+(k+2)(k+1)2)==k2+k−2k+2+(k+1)2==(k+2)(k−1)k+2+(k+1)2==(k+1)2+k−1==(k+1)2+(k+1)−2QED Commented by Rasheed.Sindhi last updated on 24/Dec/21 Niceproofsir!Butthequestionisaboutsimplification,notaboutproof. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: It-is-given-that-x-2-2-x-Find-x-Next Next post: Prove-that-1-2-2-2-2-3-3-2-4-n-2-n-1-2-n-1-n-2-n-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.