Menu Close

simplify-1-A-n-1-a-1-a-2-n-1-a-2-n-with-n-natural-integr-and-a-gt-0-2-f-x-1-2x-1-1-2x-1-2-n-1-2x-1-2-n-




Question Number 39519 by math khazana by abdo last updated on 07/Jul/18
simplify   1) A_n =(1/( (√a))){ (((1+(√a))/2) )^n  −(((1−(√a))/2))^n } with n natural   integr and a>0  2) f(x)= (1/( (√(2x+1)))){ (((1+(√(2x+1)))/2))^n  −(((1−(√(2x+1)))/2))^n }
simplify1)An=1a{(1+a2)n(1a2)n}withnnaturalintegranda>02)f(x)=12x+1{(1+2x+12)n(12x+12)n}
Commented by math khazana by abdo last updated on 08/Jul/18
1) we have A_n  = (1/(2^n (√a))){ (1+(√a))^n  −(1−(√a))^n }  = (1/(2^n (√a))){ Σ_(k=0) ^n  C_n ^k   ((√a))^k   −Σ_(k=0) ^n  C_n ^k (−(√a))^k }  = (1/(2^n (√a))){ Σ_(k=0) ^n   C_n ^k   ( ((√a))^k  −(−(√a))^k )}    =(1/(2^n (√a))){ Σ_(k=0) ^n  C_n ^k (1−(−1)^k )((√a))^k }   = (1/(2^n (√a))) Σ_(p=0) ^([((n−1)/2)])    2 C_n ^(2p+1)   ((√a))^(2p+1) }  A_n =  (1/2^(n−1) ) Σ_(p=0) ^([((n−1)/2)])    C_n ^(2p+1)   a^p   2) let take a=2x+1 ⇒  f(x) = (1/2^(n−1) ) Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)   (2x+1)^p   .
1)wehaveAn=12na{(1+a)n(1a)n}=12na{k=0nCnk(a)kk=0nCnk(a)k}=12na{k=0nCnk((a)k(a)k)}=12na{k=0nCnk(1(1)k)(a)k}=12nap=0[n12]2Cn2p+1(a)2p+1}An=12n1p=0[n12]Cn2p+1ap2)lettakea=2x+1f(x)=12n1p=0[n12]Cn2p+1(2x+1)p.
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18
1)A_n =(1/(2^n (√a))){(1+n_C_1  ((√a))+n_C_2  ((√a))^2 +n_C_3  ((√a))^3 +   +...+((√a))^n )−(1−n_C_1  ((√a))^2 +n_C_2  ((√a))^3 −...)}  =(2/(2^n (√a))){n_C_1  ((√a))+n_C_3  ((√a))^3 +n_C_5  ((√a))^5 +..
1)An=12na{(1+nC1(a)+nC2(a)2+nC3(a)3+++(a)n)(1nC1(a)2+nC2(a)3)}=22na{nC1(a)+nC3(a)3+nC5(a)5+..

Leave a Reply

Your email address will not be published. Required fields are marked *