Menu Close

Simplify-2-2-2-2-2-2-2-




Question Number 146964 by mathdanisur last updated on 16/Jul/21
Simplify:  (((√2) ∙ (√(2 + (√2))) ∙ (√(2 - (√2))))/( (√(2(√2))))) = ?
$${Simplify}: \\ $$$$\frac{\sqrt{\mathrm{2}}\:\centerdot\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}}}\:\centerdot\:\sqrt{\mathrm{2}\:-\:\sqrt{\mathrm{2}}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}\:=\:? \\ $$
Answered by Olaf_Thorendsen last updated on 16/Jul/21
x = (((√2)(√(2+(√2))).(√(2−(√2))))/( (√(2(√2)))))  x = (((√2)(√((2+(√2))(2−(√2)))))/( (√(2(√2)))))  x = (((√2)(√2))/( (√(2(√2))))) = (2/( (√(2(√2))))) = ((2(√(2(√2))))/(2(√2))) = (√(√2)) = 2^(1/4)
$${x}\:=\:\frac{\sqrt{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}.\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}} \\ $$$${x}\:=\:\frac{\sqrt{\mathrm{2}}\sqrt{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}} \\ $$$${x}\:=\:\frac{\sqrt{\mathrm{2}}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}\sqrt{\mathrm{2}}}\:=\:\sqrt{\sqrt{\mathrm{2}}}\:=\:\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$
Commented by mathdanisur last updated on 16/Jul/21
thank you Ser
$${thank}\:{you}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *