Menu Close

simplify-3-2-2-




Question Number 33575 by MURALI last updated on 19/Apr/18
simplify (√((3+2(√(2)))))
$$\mathrm{simplify}\:\sqrt{\left(\mathrm{3}+\mathrm{2}\sqrt{\left.\mathrm{2}\right)}\right.} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Apr/18
Let (√((3+2(√(2)))))  =a+b(√2)  where a,b ∈Z     ( (√((3+2(√(2))))) )^2 =(a+b(√2) )^2   a^2 +2b^2 +2ab(√2)=3+2(√2)  a^2 +2b^2 =3 ∧  ab=1  ab=1⇒b=1/a  a^2 +2b^2 =3⇒a^2 +(2/a^2 )=3  a^4 −3a^2 +2=0  (a^2 −1)(a^2 −2)=0  a=±1 , a=±(√2) ∉Z  Hence a=±1                     b=1/(±1)=±1  ∴   (√((3+2(√(2)))))=1+(√2)  ,  −1−(√2)
$$\mathrm{Let}\:\sqrt{\left(\mathrm{3}+\mathrm{2}\sqrt{\left.\mathrm{2}\right)}\right.}\:\:=\mathrm{a}+\mathrm{b}\sqrt{\mathrm{2}} \\ $$$$\mathrm{where}\:\mathrm{a},\mathrm{b}\:\in\mathbb{Z} \\ $$$$\:\:\:\left(\:\sqrt{\left(\mathrm{3}+\mathrm{2}\sqrt{\left.\mathrm{2}\right)}\right.}\:\right)^{\mathrm{2}} =\left(\mathrm{a}+\mathrm{b}\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} +\mathrm{2ab}\sqrt{\mathrm{2}}=\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} =\mathrm{3}\:\wedge\:\:\mathrm{ab}=\mathrm{1} \\ $$$$\mathrm{ab}=\mathrm{1}\Rightarrow\mathrm{b}=\mathrm{1}/\mathrm{a} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} =\mathrm{3}\Rightarrow\mathrm{a}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{a}^{\mathrm{2}} }=\mathrm{3} \\ $$$$\mathrm{a}^{\mathrm{4}} −\mathrm{3a}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{a}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{a}^{\mathrm{2}} −\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{a}=\pm\mathrm{1}\:,\:\mathrm{a}=\pm\sqrt{\mathrm{2}}\:\notin\mathbb{Z} \\ $$$$\mathrm{Hence}\:\mathrm{a}=\pm\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}=\mathrm{1}/\left(\pm\mathrm{1}\right)=\pm\mathrm{1} \\ $$$$\therefore\:\:\:\sqrt{\left(\mathrm{3}+\mathrm{2}\sqrt{\left.\mathrm{2}\right)}\right.}=\mathrm{1}+\sqrt{\mathrm{2}}\:\:,\:\:−\mathrm{1}−\sqrt{\mathrm{2}} \\ $$
Answered by MURALI last updated on 19/Apr/18
(3+2(√2)  )^2  =((√2) )^2
$$\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\:\:\right)^{\mathrm{2}} \:=\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} \\ $$$$ \\ $$
Commented by Rasheed.Sindhi last updated on 21/Apr/18
Perhaps you mean  (3+2(√2)  )^2  =(1+(√2) )^2
$$\mathrm{Perhaps}\:\mathrm{you}\:\mathrm{mean} \\ $$$$\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\:\:\right)^{\mathrm{2}} \:=\left(\mathrm{1}+\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} \\ $$$$ \\ $$
Answered by MURALI last updated on 19/Apr/18
(3+ 2(√2) )=((√2) )^2 +2(√2)  ×1+(1)^2   (3+ 2(√2) )=((√2) +1)^2   ∴  (√(3+2(√(2)))))  =  (√2) +1
$$\left(\mathrm{3}+\:\mathrm{2}\sqrt{\mathrm{2}}\:\right)=\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{2}}\:\:×\mathrm{1}+\left(\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{3}+\:\mathrm{2}\sqrt{\mathrm{2}}\:\right)=\left(\sqrt{\mathrm{2}}\:+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\therefore\:\:\sqrt{\mathrm{3}+\mathrm{2}\sqrt{\left.\mathrm{2}\right)}}\:\:=\:\:\sqrt{\mathrm{2}}\:+\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *