Menu Close

Simplify-3-3-10-3-1-3-i-3-3-10-3-1-3-i-




Question Number 78800 by Tony Lin last updated on 20/Jan/20
Simplify:   _3 (√(3+((10)/3)(√(1/3))i))+ _3 (√(3−((10)/3)(√(1/3))i))
Simplify:33+10313i+3310313i
Commented by mathmax by abdo last updated on 20/Jan/20
A =(3+((10)/(3(√3)))i)^(1/3)  +(3−((10)/(3(√3)))i)^(1/3)   we have ∣3+((10)/(3(√3)))i∣ =(√(3^2  +((10^2 )/(27)) ))=(√((37×9 +100)/(27)))=(√(((433)/(37))=r_0 ))  ⇒3+((10)/(3(√3)))i =r_0  e^(iarctan(((10)/(9(√3)))))  ⇒(3+((10)/(3(√3)))i)^(1/3) =(r_0 )^(1/3)  e^((i/3)arctan(((10)/(9(√3)))))   also (3−((10)/(3(√3)))i)^(1/3)  =(r_0 )^(1/3)  e^(−(i/3)arctan(((10)/(9(√3)))))  ⇒  A =(r_0 )^(1/3)  (2cos((1/3)arctan(((10)/(9(√3)))))=2(r_0 )^(1/3)  cos((1/3)arctan(((10)/(9(√3)))))
A=(3+1033i)13+(31033i)13wehave3+1033i=32+10227=37×9+10027=43337=r03+1033i=r0eiarctan(1093)(3+1033i)13=(r0)13ei3arctan(1093)also(31033i)13=(r0)13ei3arctan(1093)A=(r0)13(2cos(13arctan(1093))=2(r0)13cos(13arctan(1093))
Commented by Tony Lin last updated on 21/Jan/20
thanks sir, but r_0 =(√((27×9+100)/(27)))=(√((343)/(27)))
thankssir,butr0=27×9+10027=34327
Commented by mathmax by abdo last updated on 21/Jan/20
yes
yes
Answered by MJS last updated on 20/Jan/20
x=a^(1/3) +b^(1/3)      ∣^3   x^3 =a+3a^(1/3) b^(1/3) (a^(1/3) +b^(1/3) )+b  x^3 =a+3a^(1/3) b^(1/3) x+b  x^3 −3a^(1/3) b^(1/3) x−(a+b)=0  a=u+v∧b=u−v  x^3 −3(u^2 −v^2 )^(1/3) x−2u=0  u=3∧v=((10)/3)(√(1/3))i  x^3 −7x−6=0  ⇒  x_1 =−2  x_2 =−1  x_3 =3  the angles of 3±((10)/3)(√(1/3))i are  ±arctan ((10(√3))/(27)) ≈±.570377; their absolute  value is smaller than (π/2) ⇒ the solution must  be >0 ⇒ solution is  ((3+((10)/3)(√(1/3))i))^(1/3) +((3−((10)/3)(√(1/3))i))^(1/3) =3
x=a13+b133x3=a+3a13b13(a13+b13)+bx3=a+3a13b13x+bx33a13b13x(a+b)=0a=u+vb=uvx33(u2v2)13x2u=0u=3v=10313ix37x6=0x1=2x2=1x3=3theanglesof3±10313iare±arctan10327±.570377;theirabsolutevalueissmallerthanπ2thesolutionmustbe>0solutionis3+10313i3+310313i3=3
Commented by Tony Lin last updated on 21/Jan/20
thanks sir, but if we originally use   Cardano′s method to solve   x^3 +px+q=0  how can we simplify the answer to  become more beautiful without using  factorization  or what we can do is only cube it  and solve it in a complicated and  slow way
thankssir,butifweoriginallyuseCardanosmethodtosolvex3+px+q=0howcanwesimplifytheanswertobecomemorebeautifulwithoutusingfactorizationorwhatwecandoisonlycubeitandsolveitinacomplicatedandslowway
Commented by MJS last updated on 21/Jan/20
Cardano doesn′t work when the equation has  3 real roots.  x^3 +px+q=0  first, always check all factors of ±q  (x−α)(x−β)(x−γ)=x^3 +...−αβγ  ⇒ q=−αβγ  if we have solutions ∈Z or ∈Q we can simply  find them  second, calculate D=(p^3 /(27))+(q^2 /4)  D≥0 ⇒ Cardano  D<0 ⇒ trigonometric solution  x_(k+1) =(2/3)(√(−3p))sin ((1/3)(2kπ+arcsin ((9q)/(2(√(−3p^3 ))))))  with k=0, 1, 2  the problem with both methods is that the  solutions “hide” easier ones like x=(√3)+(√2)  but there′s no other way
Cardanodoesntworkwhentheequationhas3realroots.x3+px+q=0first,alwayscheckallfactorsof±q(xα)(xβ)(xγ)=x3+αβγq=αβγifwehavesolutionsZorQwecansimplyfindthemsecond,calculateD=p327+q24D0CardanoD<0trigonometricsolutionxk+1=233psin(13(2kπ+arcsin9q23p3))withk=0,1,2theproblemwithbothmethodsisthatthesolutionshideeasieroneslikex=3+2buttheresnootherway
Commented by MJS last updated on 21/Jan/20
x^3 −7x−6=0  in this case, first try factors of ±6:  {−6, −3, −2, −1, 1, 2, 3, 6}  and you′re done  Cardano doesn′t work because  D=(((−7)^3 )/(27))+(((−6)^2 )/4)=−((100)/(27))<0  trigonometric solution gives  x_1 =−((√(21))/3)sin ((1/3)arcsin ((9(√(21)))/(49)))  x_2 =((2(√(21)))/3)sin ((π/3)+arcsin ((9(√(21)))/(49)))  x_3 =−((2(√(21)))/3)cos ((π/6)+arcsin ((9(√(21)))/(49)))  and it′s not easy to show  x_1 =−1  x_2 =3  x_3 =−2
x37x6=0inthiscase,firsttryfactorsof±6:{6,3,2,1,1,2,3,6}andyouredoneCardanodoesntworkbecauseD=(7)327+(6)24=10027<0trigonometricsolutiongivesx1=213sin(13arcsin92149)x2=2213sin(π3+arcsin92149)x3=2213cos(π6+arcsin92149)anditsnoteasytoshowx1=1x2=3x3=2
Commented by jagoll last updated on 21/Jan/20
waw..i understand sir. thanks sir
waw..iunderstandsir.thankssir
Commented by Tony Lin last updated on 21/Jan/20
thanks sir,and I found that  if I use the result from mathmax  ((3+((10)/3)(√(1/3))i))^(1/3) +((3−((10)/3)(√(1/3))i))^(1/3)   =2(√(7/3))cos[(1/3)arctan(((10)/(9(√3))))]  let arctan(((10)/(9(√3))))=θ⇒tanθ=((10)/(9(√3)))  ∴cosθ=((9(√3))/(7(√7)))=4cos^3 (θ/3)−3cos(θ/3)  let cos(θ/3)=t⇒4t^3 −3t=((9(√3))/(7(√7)))  ⇒28(√7)t^3 −21(√7)t−9(√3)=0  ⇒(2(√7)t−3(√3))(14t^2 +3(√(21))t+3)=0  ∴t=(3/2)(√(3/7))  ∴2(√(7/3))cos[(1/3)arctan(((10)/(9(√3))))]  =((3+((10)/3)(√(1/3))i))^(1/3) +((3−((10)/3)(√(1/3))i))^(1/3)   =3
thankssir,andIfoundthatifIusetheresultfrommathmax3+10313i3+310313i3=273cos[13arctan(1093)]letarctan(1093)=θtanθ=1093cosθ=9377=4cos3θ33cosθ3letcosθ3=t4t33t=9377287t3217t93=0(27t33)(14t2+321t+3)=0t=3237273cos[13arctan(1093)]=3+10313i3+310313i3=3
Commented by msup trace by abdo last updated on 21/Jan/20
thank you for completing the answer
thankyouforcompletingtheanswer

Leave a Reply

Your email address will not be published. Required fields are marked *