Question Number 30528 by abdo imad last updated on 22/Feb/18
$${simplify}\:\:{A}=\:{arctan}\left(\frac{{sinx}}{\mathrm{1}−{cosx}}\right)\:. \\ $$
Commented by abdo imad last updated on 23/Feb/18
$${we}\:{have}\:{A}={arctan}\left(\frac{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\right) \\ $$$${A}={arctan}\left({cotan}\left(\frac{{x}}{\mathrm{2}}\right)\right)={arctan}\left(\:\frac{\mathrm{1}}{{tan}\left(\frac{{x}}{\mathrm{2}}\right)}\right) \\ $$$${case}\:\mathrm{1}\:{if}\:\mathrm{0}<{x}<\pi\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)>\mathrm{0}\Rightarrow{A}=\frac{\pi}{\mathrm{2}}\:−{arctan}\left({tan}\left(\frac{{x}}{\mathrm{2}}\right)\right) \\ $$$$\Rightarrow\:{A}=\frac{\pi}{\mathrm{2}}\:−\frac{{x}}{\mathrm{2}}=\frac{\pi−{x}}{\mathrm{2}} \\ $$$${case}\mathrm{2}\:{if}\:−\pi<{x}<\mathrm{0}\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)<\mathrm{0}\:\Rightarrow{A}=−\frac{\pi}{\mathrm{2}}\:−{arctan}\left({tan}\left(\frac{{x}}{\mathrm{2}}\right)\right) \\ $$$$\Rightarrow{A}=−\frac{\pi}{\mathrm{2}}\:−\frac{{x}}{\mathrm{2}}\:. \\ $$
Answered by prakash jain last updated on 22/Feb/18
$$\frac{\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{cos}\:{x}}=\frac{\mathrm{2sin}\:\frac{{x}}{\mathrm{2}}\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}{\mathrm{2sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}=\mathrm{cot}\:\frac{{x}}{\mathrm{2}} \\ $$$${arctan}\left(\frac{{sinx}}{\mathrm{1}−{cosx}}\right)\:=\mathrm{tan}^{−\mathrm{1}} \mathrm{cot}\:\frac{{x}}{\mathrm{2}} \\ $$
Commented by prakash jain last updated on 23/Feb/18
$$\mathrm{what}\:\mathrm{if}\:{x}=\mathrm{8}\pi,\:\mathrm{9}\pi\:\mathrm{etc}? \\ $$$$\mathrm{tan}^{−\mathrm{1}} {x}\:\mathrm{should}\:\mathrm{be}\:\mathrm{from}\:−\frac{\pi}{\mathrm{2}}\:\mathrm{to}\:\frac{\pi}{\mathrm{2}} \\ $$
Commented by mrW2 last updated on 23/Feb/18
$$\mathrm{tan}^{−\mathrm{1}} \mathrm{cot}\:\frac{{x}}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}−\frac{{x}}{\mathrm{2}}\:??? \\ $$
Commented by mrW2 last updated on 23/Feb/18
$${for}\:\mathrm{0}<{x}<\mathrm{2}\pi: \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left(\pi−{x}\right) \\ $$$$ \\ $$$${generally}: \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left(\pi+\mathrm{2}\pi\left[\frac{{x}}{\mathrm{2}\pi}\right]−{x}\right) \\ $$$$ \\ $$$${e}.{g}.:\: \\ $$$${x}=\mathrm{6}.\mathrm{5}\pi \\ $$$$\left[\frac{{x}}{\mathrm{2}\pi}\right]=\left[\frac{\mathrm{6}.\mathrm{5}\pi}{\mathrm{2}\pi}\right]=\mathrm{3} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left(\pi+\mathrm{6}\pi−\mathrm{6}.\mathrm{5}\pi\right)=\frac{\pi}{\mathrm{4}} \\ $$