Menu Close

simplify-A-arctan-sinx-1-cosx-




Question Number 30528 by abdo imad last updated on 22/Feb/18
simplify  A= arctan(((sinx)/(1−cosx))) .
simplifyA=arctan(sinx1cosx).
Commented by abdo imad last updated on 23/Feb/18
we have A=arctan(((2sin((x/2))cos((x/2)))/(2sin^2 ((x/2)))))  A=arctan(cotan((x/2)))=arctan( (1/(tan((x/2)))))  case 1 if 0<x<π  tan((x/2))>0⇒A=(π/2) −arctan(tan((x/2)))  ⇒ A=(π/2) −(x/2)=((π−x)/2)  case2 if −π<x<0  tan((x/2))<0 ⇒A=−(π/2) −arctan(tan((x/2)))  ⇒A=−(π/2) −(x/2) .
wehaveA=arctan(2sin(x2)cos(x2)2sin2(x2))A=arctan(cotan(x2))=arctan(1tan(x2))case1if0<x<πtan(x2)>0A=π2arctan(tan(x2))A=π2x2=πx2case2ifπ<x<0tan(x2)<0A=π2arctan(tan(x2))A=π2x2.
Answered by prakash jain last updated on 22/Feb/18
((sin x)/(1−cos x))=((2sin (x/2)cos (x/2))/(2sin^2 (x/2)))=cot (x/2)  arctan(((sinx)/(1−cosx))) =tan^(−1) cot (x/2)
sinx1cosx=2sinx2cosx22sin2x2=cotx2arctan(sinx1cosx)=tan1cotx2
Commented by prakash jain last updated on 23/Feb/18
what if x=8π, 9π etc?  tan^(−1) x should be from −(π/2) to (π/2)
whatifx=8π,9πetc?tan1xshouldbefromπ2toπ2
Commented by mrW2 last updated on 23/Feb/18
tan^(−1) cot (x/2)=(π/2)−(x/2) ???
tan1cotx2=π2x2???
Commented by mrW2 last updated on 23/Feb/18
for 0<x<2π:  A=(1/2)(π−x)    generally:  A=(1/2)(π+2π[(x/(2π))]−x)    e.g.:   x=6.5π  [(x/(2π))]=[((6.5π)/(2π))]=3  A=(1/2)(π+6π−6.5π)=(π/4)
for0<x<2π:A=12(πx)generally:A=12(π+2π[x2π]x)e.g.:x=6.5π[x2π]=[6.5π2π]=3A=12(π+6π6.5π)=π4

Leave a Reply

Your email address will not be published. Required fields are marked *