Menu Close

simplify-A-cos-4-cos-4-pi-4-cos-4-2pi-4-cos-4-3pi-4-




Question Number 28164 by abdo imad last updated on 21/Jan/18
simplify   A=cos^4 θ +cos^4 (θ+(π/4)) +cos^4 (θ +((2π)/4)) +cos^4 (θ +((3π)/4)).
$${simplify}\: \\ $$$${A}={cos}^{\mathrm{4}} \theta\:+{cos}^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{4}}\right)\:+{cos}^{\mathrm{4}} \left(\theta\:+\frac{\mathrm{2}\pi}{\mathrm{4}}\right)\:+{cos}^{\mathrm{4}} \left(\theta\:+\frac{\mathrm{3}\pi}{\mathrm{4}}\right). \\ $$
Answered by ajfour last updated on 21/Jan/18
A=cos^4 θ+cos^4 (θ+(π/2))+         cos^4 (θ+(π/4))+cos^4 (θ+(π/4)+(π/2))     =(cos^4 θ+sin^4 θ)+              cos^4 (θ+(π/4))+sin^4 (θ+(π/4))     =1−2sin^2 θcos^2 θ+         1−2sin^2 (θ+(π/4))cos^2 (θ+(π/4))    =2−(1/4)[2sin^2 2θ+2sin^2 (θ+(π/4))]  =2−(1/4)[1−cos 2θ+1−cos (2θ+(π/2))]  A=(3/2)+(((cos 2θ−sin 2θ)/4)) .
$${A}=\mathrm{cos}\:^{\mathrm{4}} \theta+\mathrm{cos}\:^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{2}}\right)+ \\ $$$$\:\:\:\:\:\:\:\mathrm{cos}\:^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{4}}\right)+\mathrm{cos}\:^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{2}}\right) \\ $$$$\:\:\:=\left(\mathrm{cos}\:^{\mathrm{4}} \theta+\mathrm{sin}\:^{\mathrm{4}} \theta\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{4}}\right)+\mathrm{sin}\:^{\mathrm{4}} \left(\theta+\frac{\pi}{\mathrm{4}}\right) \\ $$$$\:\:\:=\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:^{\mathrm{2}} \theta+ \\ $$$$\:\:\:\:\:\:\:\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \left(\theta+\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\:^{\mathrm{2}} \left(\theta+\frac{\pi}{\mathrm{4}}\right) \\ $$$$\:\:=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{2sin}\:^{\mathrm{2}} \mathrm{2}\theta+\mathrm{2sin}\:^{\mathrm{2}} \left(\theta+\frac{\pi}{\mathrm{4}}\right)\right] \\ $$$$=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta+\mathrm{1}−\mathrm{cos}\:\left(\mathrm{2}\theta+\frac{\pi}{\mathrm{2}}\right)\right] \\ $$$${A}=\frac{\mathrm{3}}{\mathrm{2}}+\left(\frac{\mathrm{cos}\:\mathrm{2}\theta−\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{4}}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *