Menu Close

simplify-A-n-C-n-1-2-C-n-2-3-C-n-3-n-C-n-n-




Question Number 31229 by abdo imad last updated on 03/Mar/18
simplify A_n = C_n ^1   +2 C_n ^2  +3 C_n ^3  +... + n C_n ^n  .
$${simplify}\:{A}_{{n}} =\:{C}_{{n}} ^{\mathrm{1}} \:\:+\mathrm{2}\:{C}_{{n}} ^{\mathrm{2}} \:+\mathrm{3}\:{C}_{{n}} ^{\mathrm{3}} \:+…\:+\:{n}\:{C}_{{n}} ^{{n}} \:. \\ $$
Commented by abdo imad last updated on 05/Mar/18
let introduce the polynomial p(x)=Σ_(k=0) ^n  C_n ^k  x^k   we have p(x)= (x+1)^n  ⇒p^′ (x)=n(x+1)^(n−1)  from   another side p^′ (x)= Σ_(k=1) ^n k C_n ^k  x^(k−1)   and we have  A_n =p^′ (1)= n 2^(n−1)  .
$${let}\:{introduce}\:{the}\:{polynomial}\:{p}\left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \\ $$$${we}\:{have}\:{p}\left({x}\right)=\:\left({x}+\mathrm{1}\right)^{{n}} \:\Rightarrow{p}^{'} \left({x}\right)={n}\left({x}+\mathrm{1}\right)^{{n}−\mathrm{1}} \:{from}\: \\ $$$${another}\:{side}\:{p}^{'} \left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}\:{C}_{{n}} ^{{k}} \:{x}^{{k}−\mathrm{1}} \:\:{and}\:{we}\:{have} \\ $$$${A}_{{n}} ={p}^{'} \left(\mathrm{1}\right)=\:{n}\:\mathrm{2}^{{n}−\mathrm{1}} \:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *