Menu Close

simplify-A-n-k-0-n-k-2-C-n-k-cos-k-and-B-n-k-0-n-k-2-C-n-k-sin-k-




Question Number 54675 by maxmathsup by imad last updated on 09/Feb/19
simplify  A_n =Σ_(k=0) ^n  k^2  C_n ^k  cos(kθ) and B_n =Σ_(k=0) ^n  k^2  C_n ^k  sin(kθ) .
simplifyAn=k=0nk2Cnkcos(kθ)andBn=k=0nk2Cnksin(kθ).
Commented by maxmathsup by imad last updated on 10/Feb/19
we have A_n +iB_n =Σ_(k=0) ^n  k^2  C_n ^k   (e^(iθ) )^k    but we have proved that  Σ_(k=0) ^n  k^2  C_n ^k  z^k    = nz(z+1)^(n−1)   +n(n−1)z^2 (z+1)^(n−2)  ⇒  Σ_(k=0) ^n  k^2  C_n ^k  (e^(iθ) )^k  =n e^(iθ) (1+e^(iθ) )^(n−1)  +n(n−1)e^(2iθ) (e^(iθ)  +1)^(n−2)   but  1+e^(iθ)  =1+cosθ +isinθ =2cos^2 ((θ/2)) +2isin((θ/2))cos((θ/2))  =2cos((θ/2))e^(i(θ/2))  ⇒ A_n +iB_n =n e^(iθ) 2^(n−1) cos^(n−1) ((θ/2))e^(i((nθ)/2))   +n(n−1)e^(2iθ)   2^(n−2)  cos^(n−2) ((θ/2))e^(i(((n−2)θ)/2))   =n 2^(n−1)  cos^(n−1)) ((θ/2)) e^(i(θ +((nθ)/2)))   +n(n−1) 2^(n−2)  e^(i(2θ +(((n−2)θ)/2)))   =n 2^(n−1)  cos^(n−1) ((θ/2)){cos((((n+2)θ)/2))+isin((((n+2)θ)/2))}  +n(n−1)2^(n−2)   {cos((((n+2)θ)/2)) +isin((((n+2)θ)/2))  =(n 2^(n−1)  cos^(n−1) ((θ/2)) +n(n−1)2^(n−2) )cos((((n+2)θ)/2))  +i (n 2^(n−1)  cos^(n−1) ((θ/2)) +n(n−1)2^(n−2) )sin((((n+2)θ)/2)) ⇒  A_n =(n 2^(n−1) cos^(n−1) ((θ/2))+n(n−1)2^(n−2) )cos((((n+2)θ)/2)) and  B_n =(n 2^(n−1)  cos^(n−1) ((θ/2))+n(n−1)2^(n−2) )sin((((n+2)θ)/2)) .
wehaveAn+iBn=k=0nk2Cnk(eiθ)kbutwehaveprovedthatk=0nk2Cnkzk=nz(z+1)n1+n(n1)z2(z+1)n2k=0nk2Cnk(eiθ)k=neiθ(1+eiθ)n1+n(n1)e2iθ(eiθ+1)n2but1+eiθ=1+cosθ+isinθ=2cos2(θ2)+2isin(θ2)cos(θ2)=2cos(θ2)eiθ2An+iBn=neiθ2n1cosn1(θ2)einθ2+n(n1)e2iθ2n2cosn2(θ2)ei(n2)θ2=n2n1cosn1)(θ2)ei(θ+nθ2)+n(n1)2n2ei(2θ+(n2)θ2)=n2n1cosn1(θ2){cos((n+2)θ2)+isin((n+2)θ2)}+n(n1)2n2{cos((n+2)θ2)+isin((n+2)θ2)=(n2n1cosn1(θ2)+n(n1)2n2)cos((n+2)θ2)+i(n2n1cosn1(θ2)+n(n1)2n2)sin((n+2)θ2)An=(n2n1cosn1(θ2)+n(n1)2n2)cos((n+2)θ2)andBn=(n2n1cosn1(θ2)+n(n1)2n2)sin((n+2)θ2).
Answered by Smail last updated on 09/Feb/19
A_n +iB_n =S′′(θ)  S′′(θ)=Σ_(k=0) ^n k^2 C_n ^k e^(iθk)   S′(θ)=(1/i)Σ_(k=0) ^n kC_n ^k e^(iθk) +c_1   S(θ)=−Σ_(k=0) ^n C_n ^k e^(iθk) +θc_1 +c_2   S(θ)=−(1+e^(iθ) )^n +θc_1 +c_2   S′(θ)=−ine^(iθ) (1+e^(iθ) )^(n−1) +c_1   S′′(θ)=ne^(iθ) (1+e^(iθ) )^(n−1) +n(n−1)e^(2iθ) (1+e^(iθ) )^(n−2)   =ne^(iθ) (1+e^(iθ) )^(n−2) (1+e^(iθ) +(n−1)e^(iθ) )  A_n +iB_n =ne^(iθ) (1+e^(iθ) )^(n−2) (1+ne^(iθ) )  =ne^(iθ) (1+cosθ+isinθ)^(n−2) (1+ne^(iθ) )  =ne^(iθ) (2cos^2 (θ/2)+2isin((θ/2))cos((θ/2)))^(n−2) (1+ne^(iθ) )  =2^(n−2) ne^(iθ) cos^(n−2) (θ/2)(cos(θ/2)+isin(θ/2))^(n−2) (1+ne^(iθ) )  =2^(n−2) ne^(iθ) cos^(n−2) (θ/2)(e^(i((n−2)/2)θ) )(1+ne^(iθ) )  =2^(n−2) ncos^(n−2) ((θ/2))e^(i(n/2)θ) (1+ne^(iθ) )  =2^(n−2) ncos^(n−2) ((θ/2))(e^(i(n/2)θ) +ne^(i((n+2)/2)θ) )  =2^(n−2) ncos^(n−2) ((θ/2))(cos((nθ)/2)+isin((nθ)/2)+ncos((n+2)/2)θ+insin((n+2)/2)θ)  A_n =2^(n−2) ncos^(n−2) (θ/2)(cos((nθ)/2)+ncos((n+2)/2)θ)  B_n =2^(n−2) ncos^(n−2) (θ/2)(sin((nθ)/2)+nsin((n+2)/2)θ)
An+iBn=S(θ)S(θ)=nk=0k2CnkeiθkS(θ)=1ink=0kCnkeiθk+c1S(θ)=nk=0Cnkeiθk+θc1+c2S(θ)=(1+eiθ)n+θc1+c2S(θ)=ineiθ(1+eiθ)n1+c1S(θ)=neiθ(1+eiθ)n1+n(n1)e2iθ(1+eiθ)n2=neiθ(1+eiθ)n2(1+eiθ+(n1)eiθ)An+iBn=neiθ(1+eiθ)n2(1+neiθ)=neiθ(1+cosθ+isinθ)n2(1+neiθ)=neiθ(2cos2θ2+2isin(θ2)cos(θ2))n2(1+neiθ)=2n2neiθcosn2θ2(cosθ2+isinθ2)n2(1+neiθ)=2n2neiθcosn2θ2(ein22θ)(1+neiθ)=2n2ncosn2(θ2)ein2θ(1+neiθ)=2n2ncosn2(θ2)(ein2θ+nein+22θ)=2n2ncosn2(θ2)(cosnθ2+isinnθ2+ncosn+22θ+insinn+22θ)An=2n2ncosn2θ2(cosnθ2+ncosn+22θ)Bn=2n2ncosn2θ2(sinnθ2+nsinn+22θ)

Leave a Reply

Your email address will not be published. Required fields are marked *