simplify-A-n-k-0-n-k-2-C-n-k-cos-k-and-B-n-k-0-n-k-2-C-n-k-sin-k- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 54675 by maxmathsup by imad last updated on 09/Feb/19 simplifyAn=∑k=0nk2Cnkcos(kθ)andBn=∑k=0nk2Cnksin(kθ). Commented by maxmathsup by imad last updated on 10/Feb/19 wehaveAn+iBn=∑k=0nk2Cnk(eiθ)kbutwehaveprovedthat∑k=0nk2Cnkzk=nz(z+1)n−1+n(n−1)z2(z+1)n−2⇒∑k=0nk2Cnk(eiθ)k=neiθ(1+eiθ)n−1+n(n−1)e2iθ(eiθ+1)n−2but1+eiθ=1+cosθ+isinθ=2cos2(θ2)+2isin(θ2)cos(θ2)=2cos(θ2)eiθ2⇒An+iBn=neiθ2n−1cosn−1(θ2)einθ2+n(n−1)e2iθ2n−2cosn−2(θ2)ei(n−2)θ2=n2n−1cosn−1)(θ2)ei(θ+nθ2)+n(n−1)2n−2ei(2θ+(n−2)θ2)=n2n−1cosn−1(θ2){cos((n+2)θ2)+isin((n+2)θ2)}+n(n−1)2n−2{cos((n+2)θ2)+isin((n+2)θ2)=(n2n−1cosn−1(θ2)+n(n−1)2n−2)cos((n+2)θ2)+i(n2n−1cosn−1(θ2)+n(n−1)2n−2)sin((n+2)θ2)⇒An=(n2n−1cosn−1(θ2)+n(n−1)2n−2)cos((n+2)θ2)andBn=(n2n−1cosn−1(θ2)+n(n−1)2n−2)sin((n+2)θ2). Answered by Smail last updated on 09/Feb/19 An+iBn=S″(θ)S″(θ)=∑nk=0k2CnkeiθkS′(θ)=1i∑nk=0kCnkeiθk+c1S(θ)=−∑nk=0Cnkeiθk+θc1+c2S(θ)=−(1+eiθ)n+θc1+c2S′(θ)=−ineiθ(1+eiθ)n−1+c1S″(θ)=neiθ(1+eiθ)n−1+n(n−1)e2iθ(1+eiθ)n−2=neiθ(1+eiθ)n−2(1+eiθ+(n−1)eiθ)An+iBn=neiθ(1+eiθ)n−2(1+neiθ)=neiθ(1+cosθ+isinθ)n−2(1+neiθ)=neiθ(2cos2θ2+2isin(θ2)cos(θ2))n−2(1+neiθ)=2n−2neiθcosn−2θ2(cosθ2+isinθ2)n−2(1+neiθ)=2n−2neiθcosn−2θ2(ein−22θ)(1+neiθ)=2n−2ncosn−2(θ2)ein2θ(1+neiθ)=2n−2ncosn−2(θ2)(ein2θ+nein+22θ)=2n−2ncosn−2(θ2)(cosnθ2+isinnθ2+ncosn+22θ+insinn+22θ)An=2n−2ncosn−2θ2(cosnθ2+ncosn+22θ)Bn=2n−2ncosn−2θ2(sinnθ2+nsinn+22θ) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: evaluate-lim-x-f-x-and-lim-x-f-x-for-f-x-x-x-2-1-Next Next post: Question-54679 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.