Question Number 19898 by Tinkutara last updated on 17/Aug/17

Answered by ajfour last updated on 22/Aug/17
![let t=iln (((x−i)/(x+i))) and let z=((x−i)/(x+i)) ⇒ ∣z∣=1 so let z=e^(iθ) here − π < θ < 0 t=iln z=i[ iθ ]=−θ Now let tan ∅ =(1/x)> 0 as x>0 , 0 < φ < (π/2) ⇒ θ=−2φ (see comment) ⇒ t=iln (((x−i)/(x+i)))= −θ =2φ =2cot^(−1) x .](https://www.tinkutara.com/question/Q19910.png)
Commented by Tinkutara last updated on 18/Aug/17

Commented by ajfour last updated on 18/Aug/17

Answered by Tinkutara last updated on 22/Aug/17
![i[log (x − i) − log (x + i)] = i[(1/2)log (x^2 + 1) + itan^(−1) (((−1)/x)) − (1/2)log (x^2 + 1) − itan^(−1) ((1/x))] = i[−2itan^(−1) ((1/x))] = 2 cot^(−1) x](https://www.tinkutara.com/question/Q20112.png)