Menu Close

Simplify-i-log-x-i-x-i-




Question Number 19898 by Tinkutara last updated on 17/Aug/17
Simplify : i log (((x − i)/(x + i))).
Simplify:ilog(xix+i).
Answered by ajfour last updated on 22/Aug/17
let t=iln (((x−i)/(x+i)))  and let z=((x−i)/(x+i))   ⇒ ∣z∣=1  so let  z=e^(iθ)    here  − π < θ < 0        t=iln z=i[ iθ ]=−θ       Now  let  tan ∅ =(1/x)> 0    as x>0 ,   0 < φ < (π/2)   ⇒   θ=−2φ  (see comment)  ⇒       t=iln (((x−i)/(x+i)))= −θ =2φ            =2cot^(−1) x .
lett=iln(xix+i)andletz=xix+iz∣=1soletz=eiθhereπ<θ<0t=ilnz=i[iθ]=θNowlettan=1x>0asx>0,0<ϕ<π2θ=2ϕ(seecomment)t=iln(xix+i)=θ=2ϕ=2cot1x.
Commented by Tinkutara last updated on 18/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by ajfour last updated on 18/Aug/17
Answered by Tinkutara last updated on 22/Aug/17
i[log (x − i) − log (x + i)]  = i[(1/2)log (x^2  + 1) + itan^(−1) (((−1)/x)) − (1/2)log (x^2  + 1) − itan^(−1) ((1/x))]  = i[−2itan^(−1) ((1/x))] = 2 cot^(−1) x
i[log(xi)log(x+i)]=i[12log(x2+1)+itan1(1x)12log(x2+1)itan1(1x)]=i[2itan1(1x)]=2cot1x

Leave a Reply

Your email address will not be published. Required fields are marked *