Menu Close

Simplify-k-0-n-1-3-k-2-n-k-




Question Number 171307 by Raxreedoroid last updated on 12/Jun/22
Simplify  Σ_(k=0) ^(n−1) 3^k 2^(n−k)
$$\mathrm{Simplify} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{3}^{{k}} \mathrm{2}^{{n}−{k}} \\ $$
Commented by mr W last updated on 12/Jun/22
=2^n Σ_(k=0) ^(n−1) ((3/2))^k   =2^n ×((((3/2))^n −1)/((3/2)−1))  =2(3^n −2^n )
$$=\mathrm{2}^{{n}} \underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{k}} \\ $$$$=\mathrm{2}^{{n}} ×\frac{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{n}} −\mathrm{1}}{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} \\ $$$$=\mathrm{2}\left(\mathrm{3}^{{n}} −\mathrm{2}^{{n}} \right) \\ $$
Answered by JDamian last updated on 12/Jun/22
2^n Σ_(k=0) ^(n−1) ((3/2))^k
$$\mathrm{2}^{{n}} \underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{k}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *