Menu Close

Simplify-log-2-5-log-25-20-log-4-50-log-4-70-log-15-49-




Question Number 24069 by Joel577 last updated on 12/Nov/17
Simplify  (((log_2  (√5) . log_(25)  20) + log_4  (√(50))  )/(log_4  70 − log_(15)  49))
Simplify(log25.log2520)+log450log470log1549
Answered by $@ty@m last updated on 12/Nov/17
=((((log (√5))/(log 2))×((log 20)/(log 25))+((log (√(50)))/(log 4)))/(((log 70)/(log 4))−((log 49)/(log 15))))  =((((log 5)/(2log 2))×(((log 2+log 10))/(2log 5))+(((log 5+log 10))/(4log 2)))/((((log 7+log 10))/(2log 2))−((2log 7)/(log15))))  =(((((log 2+1))/(4log 2))+(((log 5+1))/(4log 2)))/((log 15(log 7+1)−4log 7.log 2)/(2log 2.log 15)))  =((((log 2+log 5+1))/(4log 2))/((log 15(log 7+1)−4log 7.log 2)/(2log 2.log 15)))  =((2/(4log 2))/((log 15(log 7+1)−4log 7.log 2)/(2log 2.log 15)))  =((1/(2log 2))/((log 15(log 7+1)−4log 7.log 2)/(2log 2.log 15)))  =((log 15)/(log 15(log 7+1)−4log 7.log 2))
=log5log2×log20log25+log50log4log70log4log49log15=log52log2×(log2+log10)2log5+(log5+log10)4log2(log7+log10)2log22log7log15=(log2+1)4log2+(log5+1)4log2log15(log7+1)4log7.log22log2.log15=(log2+log5+1)4log2log15(log7+1)4log7.log22log2.log15=24log2log15(log7+1)4log7.log22log2.log15=12log2log15(log7+1)4log7.log22log2.log15=log15log15(log7+1)4log7.log2
Commented by math solver last updated on 12/Nov/17
does this means simplification { just  asking} coz  as i was trying i could not get a single   answer so thought i would be wrong    somewhere .
doesthismeanssimplification{justasking}cozasiwastryingicouldnotgetasingleanswersothoughtiwouldbewrongsomewhere.
Commented by $@ty@m last updated on 12/Nov/17
No more simplification possible.  At the most you can find its numerical   value using log table or sci.caculator
Nomoresimplificationpossible.Atthemostyoucanfinditsnumericalvalueusinglogtableorsci.caculator
Commented by $@ty@m last updated on 12/Nov/17
Commented by Joel577 last updated on 13/Nov/17
Yes, I also thought there was something  wrong with this question
Yes,Ialsothoughttherewassomethingwrongwiththisquestion
Commented by Joel577 last updated on 13/Nov/17
Btw, thank you very much
Btw,thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *