Question Number 24069 by Joel577 last updated on 12/Nov/17
$$\mathrm{Simplify} \\ $$$$\frac{\left(\mathrm{log}_{\mathrm{2}} \:\sqrt{\mathrm{5}}\:.\:\mathrm{log}_{\mathrm{25}} \:\mathrm{20}\right)\:+\:\mathrm{log}_{\mathrm{4}} \:\sqrt{\mathrm{50}}\:\:}{\mathrm{log}_{\mathrm{4}} \:\mathrm{70}\:−\:\mathrm{log}_{\mathrm{15}} \:\mathrm{49}} \\ $$
Answered by $@ty@m last updated on 12/Nov/17
$$=\frac{\frac{\mathrm{log}\:\sqrt{\mathrm{5}}}{\mathrm{log}\:\mathrm{2}}×\frac{\mathrm{log}\:\mathrm{20}}{\mathrm{log}\:\mathrm{25}}+\frac{\mathrm{log}\:\sqrt{\mathrm{50}}}{\mathrm{log}\:\mathrm{4}}}{\frac{\mathrm{log}\:\mathrm{70}}{\mathrm{log}\:\mathrm{4}}−\frac{\mathrm{log}\:\mathrm{49}}{\mathrm{log}\:\mathrm{15}}} \\ $$$$=\frac{\frac{\mathrm{log}\:\mathrm{5}}{\mathrm{2log}\:\mathrm{2}}×\frac{\left(\mathrm{log}\:\mathrm{2}+\mathrm{log}\:\mathrm{10}\right)}{\mathrm{2log}\:\mathrm{5}}+\frac{\left(\mathrm{log}\:\mathrm{5}+\mathrm{log}\:\mathrm{10}\right)}{\mathrm{4log}\:\mathrm{2}}}{\frac{\left(\mathrm{log}\:\mathrm{7}+\mathrm{log}\:\mathrm{10}\right)}{\mathrm{2log}\:\mathrm{2}}−\frac{\mathrm{2log}\:\mathrm{7}}{\mathrm{log15}}} \\ $$$$=\frac{\frac{\left(\mathrm{log}\:\mathrm{2}+\mathrm{1}\right)}{\mathrm{4log}\:\mathrm{2}}+\frac{\left(\mathrm{log}\:\mathrm{5}+\mathrm{1}\right)}{\mathrm{4log}\:\mathrm{2}}}{\frac{\mathrm{log}\:\mathrm{15}\left(\mathrm{log}\:\mathrm{7}+\mathrm{1}\right)−\mathrm{4log}\:\mathrm{7}.\mathrm{log}\:\mathrm{2}}{\mathrm{2log}\:\mathrm{2}.\mathrm{log}\:\mathrm{15}}} \\ $$$$=\frac{\frac{\left(\mathrm{log}\:\mathrm{2}+\mathrm{log}\:\mathrm{5}+\mathrm{1}\right)}{\mathrm{4log}\:\mathrm{2}}}{\frac{\mathrm{log}\:\mathrm{15}\left(\mathrm{log}\:\mathrm{7}+\mathrm{1}\right)−\mathrm{4log}\:\mathrm{7}.\mathrm{log}\:\mathrm{2}}{\mathrm{2log}\:\mathrm{2}.\mathrm{log}\:\mathrm{15}}} \\ $$$$=\frac{\frac{\mathrm{2}}{\mathrm{4log}\:\mathrm{2}}}{\frac{\mathrm{log}\:\mathrm{15}\left(\mathrm{log}\:\mathrm{7}+\mathrm{1}\right)−\mathrm{4log}\:\mathrm{7}.\mathrm{log}\:\mathrm{2}}{\mathrm{2log}\:\mathrm{2}.\mathrm{log}\:\mathrm{15}}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2log}\:\mathrm{2}}}{\frac{\mathrm{log}\:\mathrm{15}\left(\mathrm{log}\:\mathrm{7}+\mathrm{1}\right)−\mathrm{4log}\:\mathrm{7}.\mathrm{log}\:\mathrm{2}}{\mathrm{2log}\:\mathrm{2}.\mathrm{log}\:\mathrm{15}}} \\ $$$$=\frac{\mathrm{log}\:\mathrm{15}}{\mathrm{log}\:\mathrm{15}\left(\mathrm{log}\:\mathrm{7}+\mathrm{1}\right)−\mathrm{4log}\:\mathrm{7}.\mathrm{log}\:\mathrm{2}} \\ $$$$ \\ $$
Commented by math solver last updated on 12/Nov/17
$$\mathrm{does}\:\mathrm{this}\:\mathrm{means}\:\mathrm{simplification}\:\left\{\:\mathrm{just}\right. \\ $$$$\left.\mathrm{asking}\right\}\:\mathrm{coz} \\ $$$$\mathrm{as}\:\mathrm{i}\:\mathrm{was}\:\mathrm{trying}\:\mathrm{i}\:\mathrm{could}\:\mathrm{not}\:\mathrm{get}\:\mathrm{a}\:\mathrm{single}\: \\ $$$$\mathrm{answer}\:\mathrm{so}\:\mathrm{thought}\:\mathrm{i}\:\mathrm{would}\:\mathrm{be}\:\mathrm{wrong}\:\: \\ $$$$\mathrm{somewhere}\:. \\ $$
Commented by $@ty@m last updated on 12/Nov/17
$${No}\:{more}\:{simplification}\:{possible}. \\ $$$${At}\:{the}\:{most}\:{you}\:{can}\:{find}\:{its}\:{numerical}\: \\ $$$${value}\:{using}\:{log}\:{table}\:{or}\:{sci}.{caculator} \\ $$
Commented by $@ty@m last updated on 12/Nov/17
Commented by Joel577 last updated on 13/Nov/17
$${Yes},\:{I}\:{also}\:{thought}\:{there}\:{was}\:{something} \\ $$$${wrong}\:{with}\:{this}\:{question} \\ $$
Commented by Joel577 last updated on 13/Nov/17
$${Btw},\:{thank}\:{you}\:{very}\:{much} \\ $$