Menu Close

simplify-S-n-x-1-x-2-1-x-4-1-x-2-n-2-find-lim-n-S-n-x-if-x-lt-1-




Question Number 33719 by prof Abdo imad last updated on 22/Apr/18
simplify S_n (x) =(1+x^2 )(1+x^4 )....(1+x^2^n  )  2) find lim_(n→+∞)  S_n (x) if ∣x∣<1 .
simplifySn(x)=(1+x2)(1+x4).(1+x2n)2)findlimn+Sn(x)ifx∣<1.
Commented by prof Abdo imad last updated on 23/Apr/18
we have (1+x^2 )(1+x^4 ) =1+x^4  +x^2  +x^6   =1+x^2  +x^4  +x^6  =((1−x^8 )/(1−x^2 ))  if x^2 ≠1  let suppose that S_n (x) =((1−x^2^(n+1)  )/(1−x^2 ))  S_(n+1) (x)=(1+x^2 )(1+x^4 ).....(1+x^2^(n+1)  )  = (1+x^2^(n+1)  ) S_n (x)=(((1+x^2^(n+1)  )(1−x^2^(n+1)  ))/(1−x^2 ))  =((1−(x^2^(n+1)  )^2 )/(1−x^2 ))  = ((1−x^2^(n+2)  )/(1−x^2 )) the result is true at term  n+1  and we must study tbe case x=+^− 1  2) we have proved that   S_n (x) =((1 −x^2^(n+1)  )/(1−x^2 ))  so for ∣x∣<1 lim_(n→+∞) S_n (x)=(1/(1−x^2 ))
wehave(1+x2)(1+x4)=1+x4+x2+x6=1+x2+x4+x6=1x81x2ifx21letsupposethatSn(x)=1x2n+11x2Sn+1(x)=(1+x2)(1+x4)..(1+x2n+1)=(1+x2n+1)Sn(x)=(1+x2n+1)(1x2n+1)1x2=1(x2n+1)21x2=1x2n+21x2theresultistrueattermn+1andwemuststudytbecasex=+12)wehaveprovedthatSn(x)=1x2n+11x2soforx∣<1limn+Sn(x)=11x2
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Apr/18
(1+x^2 )(1+x^4 )=1+x^2 +x^4 +x^6   (1+x^2 )(1+x^4 )(1+x^8 )=(1+x^2 +x^4 +x^6 )(1+x^8 )  =1+x^2 +x^4 +x^6 +x^8 +x^(10) +x^(12) +x^(14)     S_n (x)=(1−x^(2n) )/(1−x^2 )  so the value of S_n (x) is 1/(1−x^2 ) when limit n  tends to infinity          i_(x→0)
(1+x2)(1+x4)=1+x2+x4+x6(1+x2)(1+x4)(1+x8)=(1+x2+x4+x6)(1+x8)=1+x2+x4+x6+x8+x10+x12+x14Sn(x)=(1x2n)/(1x2)sothevalueofSn(x)is1/(1x2)whenlimitntendstoinfinityix0
Commented by prof Abdo imad last updated on 22/Apr/18
its not correct because ((1−x^(2n) )/(1−x^2 ))  =((1−(x^2 )^n )/(1−x^2 )) =(((1−x^2 )(1+x^2  +x^4  +...+x^(2n−2) ))/(1−x^2 ))  =1+x^2  +x^4  +...+x^(2n−2)   ≠ S_n
itsnotcorrectbecause1x2n1x2=1(x2)n1x2=(1x2)(1+x2+x4++x2n2)1x2=1+x2+x4++x2n2Sn

Leave a Reply

Your email address will not be published. Required fields are marked *