Menu Close

simplify-z-2-1-z-1-1-z-2-1-1-z-1-z-




Question Number 172515 by Mikenice last updated on 28/Jun/22
simplify  ((z^2 −1)/(z−1))÷(1/(z^2 +1))×(1/(z+(1/z)))
$${simplify} \\ $$$$\frac{{z}^{\mathrm{2}} −\mathrm{1}}{{z}−\mathrm{1}}\boldsymbol{\div}\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}×\frac{\mathrm{1}}{{z}+\frac{\mathrm{1}}{{z}}} \\ $$
Answered by Rasheed.Sindhi last updated on 28/Jun/22
((z^2 −1)/(z−1))÷(1/(z^2 +1))×(1/(z+(1/z)))  =(((z−1)(z+1))/(z−1))×((z^2 +1)/1)×(1/((z^2 +1)/z))  =(((z+1))/1)×((z^2 +1)/1)×(z/(z^2 +1))  =z(z+1)
$$\frac{{z}^{\mathrm{2}} −\mathrm{1}}{{z}−\mathrm{1}}\boldsymbol{\div}\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}×\frac{\mathrm{1}}{{z}+\frac{\mathrm{1}}{{z}}} \\ $$$$=\frac{\left(\cancel{{z}−\mathrm{1}}\right)\left({z}+\mathrm{1}\right)}{\cancel{{z}−\mathrm{1}}}×\frac{{z}^{\mathrm{2}} +\mathrm{1}}{\mathrm{1}}×\frac{\mathrm{1}}{\frac{{z}^{\mathrm{2}} +\mathrm{1}}{{z}}} \\ $$$$=\frac{\left({z}+\mathrm{1}\right)}{\mathrm{1}}×\frac{\cancel{{z}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{1}}×\frac{{z}}{\cancel{{z}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$={z}\left({z}+\mathrm{1}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *