Question Number 60783 by aliesam last updated on 25/May/19
$$\underset{−\infty} {\overset{\infty} {\int}}{sin}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:{dx} \\ $$
Commented by maxmathsup by imad last updated on 25/May/19
$${let}\:{A}\:=\int_{−\infty} ^{+\infty} \:{sin}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:\:\Rightarrow{A}\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {sin}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:=_{{x}={tan}\theta} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\left({cos}^{\mathrm{2}} \theta\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left({cos}^{\mathrm{2}} \theta\right)}{{cos}^{\mathrm{2}} \theta}\:{d}\theta\:\:\:\:\:\:\:{we}\:{have}\:\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:\leqslant{sinx}\:\leqslant{x}\:\:\:{for}\:\mathrm{0}<{x}<\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${cos}^{\mathrm{2}} \theta\:−\frac{\mathrm{1}}{\mathrm{6}}\:{cos}^{\mathrm{6}} {x}\:\leqslant\:{sin}\left({cos}^{\mathrm{2}} {x}\right)\:\leqslant\:{cos}^{\mathrm{2}} {x}\:\Rightarrow\:\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}\:{cos}^{\mathrm{4}} {x}\:\leqslant\frac{{sin}\left({cos}^{\mathrm{2}} {x}\right)}{{cos}^{\mathrm{2}} {x}}\:\leqslant\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}\:{cos}^{\mathrm{4}} {x}\right){dx}\:\leqslant\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sin}\left({cos}^{\mathrm{2}} {x}\right)}{{cos}^{\mathrm{2}} {x}}\:{dx}\:\leqslant\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{6}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{4}} {x}\:{dx}\:\leqslant{A}\:\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{4}} {x}\:{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right)^{\mathrm{2}} {dx}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\:+{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\frac{\pi}{\mathrm{8}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{2}{x}\right){dx}\:+\frac{\mathrm{1}}{\mathrm{8}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)\right){dx} \\ $$$$=\frac{\pi}{\mathrm{8}}\:+\mathrm{0}\:+\frac{\pi}{\mathrm{16}}\:+\mathrm{9}\:=\frac{\mathrm{3}\pi}{\mathrm{16}}\:\Rightarrow\:\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{32}}\:\leqslant\:{A}\:\leqslant\:\frac{\pi}{\mathrm{2}} \\ $$$${we}\:{can}\:{take}\:\:\alpha_{\mathrm{0}} =\frac{\pi−\frac{\pi}{\mathrm{32}}}{\mathrm{2}}\:=\frac{\mathrm{31}\pi}{\mathrm{64}}\:\:{as}\:{approximatevalue}\:{for}\:{this}\:{integra} \\ $$$$\alpha_{\mathrm{0}} \sim\mathrm{1}\:,\mathrm{52}\:. \\ $$$$ \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 25/May/19
$${A}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{sin}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:\:\Rightarrow\:\pi−\frac{\pi}{\mathrm{16}}\:\leqslant{A}\:\leqslant\:\pi\:\:\Rightarrow\:\alpha_{\mathrm{0}} =\frac{\mathrm{31}\pi}{\mathrm{32}}\:\Rightarrow \\ $$$$\alpha_{\mathrm{0}} \sim\:\mathrm{3},\mathrm{04}\:\:. \\ $$