Menu Close

sin-1-2x-2-4x-2-8x-13-dx-




Question Number 84556 by jagoll last updated on 14/Mar/20
∫ sin^(−1) (((2x+2)/( (√(4x^2 +8x+13))))) dx
$$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{8x}+\mathrm{13}}}\right)\:\mathrm{dx} \\ $$
Commented by john santu last updated on 14/Mar/20
∫ sin^(−1) (((2x+2)/( (√((2x+2)^2 +9))))) dx  let 2x+2 = 3 tan θ ⇒2dx = 3sec^2 θ dθ  ∫ sin^(−1) (((3tan θ)/(3sec θ))) ×(3/2) sec^2 θ dθ =  ∫(3/2) sin^(−1) (sin θ) d(tan θ) =  (3/2)∫ θ d(tan θ) = (3/2)[ θ tan θ −∫ tan θ dθ ]  = (3/2) [ θ tan θ +∫ ((d(cos θ))/(cos θ)) ]   = (3/2)[ θ tan θ + ln ∣ cos θ ∣ ]+ c   = (3/2)[(((2x+2)/3))tan^(−1) (((2x+2)/2)) + ln∣(3/( (√(4x^2 +8x+13))))∣ ] + c
$$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\left(\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{9}}}\right)\:\mathrm{dx} \\ $$$$\mathrm{let}\:\mathrm{2x}+\mathrm{2}\:=\:\mathrm{3}\:\mathrm{tan}\:\theta\:\Rightarrow\mathrm{2dx}\:=\:\mathrm{3sec}\:^{\mathrm{2}} \theta\:\mathrm{d}\theta \\ $$$$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3tan}\:\theta}{\mathrm{3sec}\:\theta}\right)\:×\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{sec}\:^{\mathrm{2}} \theta\:\mathrm{d}\theta\:= \\ $$$$\int\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\theta\right)\:\mathrm{d}\left(\mathrm{tan}\:\theta\right)\:= \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}\int\:\theta\:\mathrm{d}\left(\mathrm{tan}\:\theta\right)\:=\:\frac{\mathrm{3}}{\mathrm{2}}\left[\:\theta\:\mathrm{tan}\:\theta\:−\int\:\mathrm{tan}\:\theta\:\mathrm{d}\theta\:\right] \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{2}}\:\left[\:\theta\:\mathrm{tan}\:\theta\:+\int\:\frac{\mathrm{d}\left(\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\theta}\:\right]\: \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{2}}\left[\:\theta\:\mathrm{tan}\:\theta\:+\:\mathrm{ln}\:\mid\:\mathrm{cos}\:\theta\:\mid\:\right]+\:\mathrm{c}\: \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{2}}\left[\left(\frac{\mathrm{2x}+\mathrm{2}}{\mathrm{3}}\right)\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\mathrm{2}}\right)\:+\:\mathrm{ln}\mid\frac{\mathrm{3}}{\:\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{8x}+\mathrm{13}}}\mid\:\right]\:+\:\mathrm{c} \\ $$
Answered by mind is power last updated on 14/Mar/20
=∫sin^− (((2x+2)/( (√((2x+2)^2 +3^2 )))))=∫sin^− ((((2x+2)/3)/( (√(1+(((2x+2)/3))^2 )))))  sin^− ((r/( (√(r^2 +1)))))  r=tg(θ)⇒sin^− (((tg(θ))/( (√(1+tg^2 (θ))))))=sin^− (sin(θ))=θ=arctan(r)  ⇒∫sin^− ((((2x+2)/3)/( (√(1+(((2x+2)/3))^2 )))))dx=∫arctan(((2x+2)/3))dx by part easy now
$$=\int{sin}^{−} \left(\frac{\mathrm{2}{x}+\mathrm{2}}{\:\sqrt{\left(\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }}\right)=\int{sin}^{−} \left(\frac{\frac{\mathrm{2}{x}+\mathrm{2}}{\mathrm{3}}}{\:\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{x}+\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} }}\right) \\ $$$${sin}^{−} \left(\frac{{r}}{\:\sqrt{{r}^{\mathrm{2}} +\mathrm{1}}}\right) \\ $$$${r}={tg}\left(\theta\right)\Rightarrow{sin}^{−} \left(\frac{{tg}\left(\theta\right)}{\:\sqrt{\mathrm{1}+{tg}^{\mathrm{2}} \left(\theta\right)}}\right)={sin}^{−} \left({sin}\left(\theta\right)\right)=\theta={arctan}\left({r}\right) \\ $$$$\Rightarrow\int{sin}^{−} \left(\frac{\frac{\mathrm{2}{x}+\mathrm{2}}{\mathrm{3}}}{\:\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{x}+\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} }}\right){dx}=\int{arctan}\left(\frac{\mathrm{2}{x}+\mathrm{2}}{\mathrm{3}}\right){dx}\:{by}\:{part}\:{easy}\:{now} \\ $$
Commented by jagoll last updated on 14/Mar/20
thank you sir. i can try
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{can}\:\mathrm{try} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *