Menu Close

sin-1-2x-2-4x-2-8x-13-dx-




Question Number 84556 by jagoll last updated on 14/Mar/20
∫ sin^(−1) (((2x+2)/( (√(4x^2 +8x+13))))) dx
sin1(2x+24x2+8x+13)dx
Commented by john santu last updated on 14/Mar/20
∫ sin^(−1) (((2x+2)/( (√((2x+2)^2 +9))))) dx  let 2x+2 = 3 tan θ ⇒2dx = 3sec^2 θ dθ  ∫ sin^(−1) (((3tan θ)/(3sec θ))) ×(3/2) sec^2 θ dθ =  ∫(3/2) sin^(−1) (sin θ) d(tan θ) =  (3/2)∫ θ d(tan θ) = (3/2)[ θ tan θ −∫ tan θ dθ ]  = (3/2) [ θ tan θ +∫ ((d(cos θ))/(cos θ)) ]   = (3/2)[ θ tan θ + ln ∣ cos θ ∣ ]+ c   = (3/2)[(((2x+2)/3))tan^(−1) (((2x+2)/2)) + ln∣(3/( (√(4x^2 +8x+13))))∣ ] + c
sin1(2x+2(2x+2)2+9)dxlet2x+2=3tanθ2dx=3sec2θdθsin1(3tanθ3secθ)×32sec2θdθ=32sin1(sinθ)d(tanθ)=32θd(tanθ)=32[θtanθtanθdθ]=32[θtanθ+d(cosθ)cosθ]=32[θtanθ+lncosθ]+c=32[(2x+23)tan1(2x+22)+ln34x2+8x+13]+c
Answered by mind is power last updated on 14/Mar/20
=∫sin^− (((2x+2)/( (√((2x+2)^2 +3^2 )))))=∫sin^− ((((2x+2)/3)/( (√(1+(((2x+2)/3))^2 )))))  sin^− ((r/( (√(r^2 +1)))))  r=tg(θ)⇒sin^− (((tg(θ))/( (√(1+tg^2 (θ))))))=sin^− (sin(θ))=θ=arctan(r)  ⇒∫sin^− ((((2x+2)/3)/( (√(1+(((2x+2)/3))^2 )))))dx=∫arctan(((2x+2)/3))dx by part easy now
=sin(2x+2(2x+2)2+32)=sin(2x+231+(2x+23)2)sin(rr2+1)r=tg(θ)sin(tg(θ)1+tg2(θ))=sin(sin(θ))=θ=arctan(r)sin(2x+231+(2x+23)2)dx=arctan(2x+23)dxbyparteasynow
Commented by jagoll last updated on 14/Mar/20
thank you sir. i can try
thankyousir.icantry

Leave a Reply

Your email address will not be published. Required fields are marked *