Menu Close

sin-1-x-2-dx-




Question Number 122877 by bemath last updated on 20/Nov/20
  ∫ (sin^(−1) (x))^2  dx ?
(sin1(x))2dx?
Commented by liberty last updated on 20/Nov/20
 let u = sin^(−1) (x) ⇒x = sin u   ⇒ dx = cos u du   β(x)=∫ u^2  cos u du =u^2 sin u −2∫u sin u du   = u^2  sin u−2(−ucos u +∫ cos u du)   = u^2  sin u+2u cos u −2sin u + c   = (u^2 −2)sin u +2u cos u + c    = x[ (sin^(−1) (x))^2 −2 ]+2sin^(−1) (x) (√(1−x^2 )) + c
letu=sin1(x)x=sinudx=cosuduβ(x)=u2cosudu=u2sinu2usinudu=u2sinu2(ucosu+cosudu)=u2sinu+2ucosu2sinu+c=(u22)sinu+2ucosu+c=x[(sin1(x))22]+2sin1(x)1x2+c
Answered by mathmax by abdo last updated on 21/Nov/20
A =∫ (arcsinx)^2 dx   ⇒A =_(arcsinx=t)   ∫  t^2  cost dt  =t^2 sint−∫  2t sint dt =t^2 sint −2  ∫ t sint dt  =t^2 sint−2(−tcost +∫ cost dt)  =t^2 sint+2t cost−2sint +C  =x arcsin^2 x+2 arcsinx(√(1−t^2 ))−2x +C
A=(arcsinx)2dxA=arcsinx=tt2costdt=t2sint2tsintdt=t2sint2tsintdt=t2sint2(tcost+costdt)=t2sint+2tcost2sint+C=xarcsin2x+2arcsinx1t22x+C

Leave a Reply

Your email address will not be published. Required fields are marked *