Question Number 85909 by jagoll last updated on 26/Mar/20

Commented by john santu last updated on 26/Mar/20
![let (√(x/(a+x))) = n ⇒ x = ((an^2 )/(1−n^2 )) I = ∫ sin^(−1) (n) × ((2an)/((1−n^2 )^2 )) dn [ h = sin^(−1) (n) ⇒ n = sin h ] I = 2a∫ h tan h sec^2 h dh I = a ( h tan^2 h −∫ (sec^2 h −1)dh) I = a (h tan^2 h −tan h + h) +c ∴ I = x sin^(−1) ((√(x/(a+x))))−(√(ax)) + a sin^(−1) ((√(x/(a+x)))) + c](https://www.tinkutara.com/question/Q85947.png)
Commented by jagoll last updated on 26/Mar/20

Answered by TANMAY PANACEA. last updated on 26/Mar/20
![x=atan^2 α→(dx/dα)=a×2tanα×sec^2 α (√((atan^2 α)/(a+atan^2 α))) =(√((sin^2 α)/(cos^2 α×sec^2 α))) =sinα I=∫α.2atanα.sec^2 αdα (I/(2a))=α∫tanαsec^2 αdα−∫[(dα/dα)∫tanαsec^2 αdα]dα =α.((tan^2 α)/2)−(1/2)∫(sec^2 α−1)dα =((αtan^2 α)/2)−((tanα)/2)+(α/2) now α=tan^(−1) (√(x/a)) I=(((tan^(−1) (√(x/a)) ×(x/a))/2)−((√(x/a))/2)+((tan^(−1) (√(x/a)))/2))×2a I=xtan^(−1) (√(x/a)) −a(√(x/a)) +atan^(−1) (√(x/a)) =(x+a)tan^(−1) (√(x/a)) −(√(ax)) pls check](https://www.tinkutara.com/question/Q85928.png)
Answered by Kunal12588 last updated on 26/Mar/20

Commented by Kunal12588 last updated on 26/Mar/20
