Menu Close

sin-1-x-a-x-dx-a-gt-0-




Question Number 85909 by jagoll last updated on 26/Mar/20
∫ sin^(−1)  ((√(x/(a+x)))) dx , a > 0
sin1(xa+x)dx,a>0
Commented by john santu last updated on 26/Mar/20
let (√(x/(a+x))) = n ⇒ x = ((an^2 )/(1−n^2 ))  I = ∫ sin^(−1) (n) × ((2an)/((1−n^2 )^2 )) dn  [ h = sin^(−1) (n) ⇒ n = sin h ]  I = 2a∫ h tan h sec^2 h dh   I = a ( h tan^2 h −∫ (sec^2 h −1)dh)  I = a (h tan^2 h −tan h + h) +c  ∴ I = x sin^(−1) ((√(x/(a+x))))−(√(ax)) + a sin^(−1) ((√(x/(a+x)))) + c
letxa+x=nx=an21n2I=sin1(n)×2an(1n2)2dn[h=sin1(n)n=sinh]I=2ahtanhsec2hdhI=a(htan2h(sec2h1)dh)I=a(htan2htanh+h)+cI=xsin1(xa+x)ax+asin1(xa+x)+c
Commented by jagoll last updated on 26/Mar/20
thank you all
thankyouall
Answered by TANMAY PANACEA. last updated on 26/Mar/20
x=atan^2 α→(dx/dα)=a×2tanα×sec^2 α  (√((atan^2 α)/(a+atan^2 α))) =(√((sin^2 α)/(cos^2 α×sec^2 α))) =sinα  I=∫α.2atanα.sec^2 αdα  (I/(2a))=α∫tanαsec^2 αdα−∫[(dα/dα)∫tanαsec^2 αdα]dα  =α.((tan^2 α)/2)−(1/2)∫(sec^2 α−1)dα  =((αtan^2 α)/2)−((tanα)/2)+(α/2)  now α=tan^(−1) (√(x/a))   I=(((tan^(−1) (√(x/a)) ×(x/a))/2)−((√(x/a))/2)+((tan^(−1) (√(x/a)))/2))×2a  I=xtan^(−1) (√(x/a)) −a(√(x/a)) +atan^(−1) (√(x/a))   =(x+a)tan^(−1) (√(x/a)) −(√(ax))   pls check
x=atan2αdxdα=a×2tanα×sec2αatan2αa+atan2α=sin2αcos2α×sec2α=sinαI=α.2atanα.sec2αdαI2a=αtanαsec2αdα[dαdαtanαsec2αdα]dα=α.tan2α212(sec2α1)dα=αtan2α2tanα2+α2nowα=tan1xaI=(tan1xa×xa2xa2+tan1xa2)×2aI=xtan1xaaxa+atan1xa=(x+a)tan1xaaxplscheck
Answered by Kunal12588 last updated on 26/Mar/20
I=xsin^(−1) (√(x/(a+x)))−∫x×(1/( (√(1−(x/(a+x))))))×(1/(2(√(x/(a+x)))))×((a+x−x)/((a+x)^2 ))dx  =xsin^(−1) (√(x/(a+x)))−∫x×((√(a+x))/( (√a)))×((√(a+x))/(2(√x)))×(a/((a+x)^2 ))dx  =xsin^(−1) (√(x/(a+x)))−(1/2)(√a)∫(√x)×(1/(a+x))dx  I_1 =∫((√x)/(a+x))dx  (√x)=t  dx=2(√x)dt  I_1 =2∫(x/(a+x))dt=2∫(t^2 /(a+t^2 ))dt  =2∫((a+t^2 )/(a+t^2 ))dt−2a∫(dt/(a+t^2 ))  =2t−2a×(1/( (√a)))tan^(−1) (t/( (√a)))+c  =2(√x)−2(√a) tan^(−1) ((√x)/( (√a)))+c  I=xsin^(−1) (√(x/(a+x)))−(1/2)(√a)(2(√x)−2(√a) tan^(−1) (√(x/a)))+C  I=xsin^(−1) (√(x/(a+x)))−(√(ax))+a tan^(−1) (√(x/a))+C
I=xsin1xa+xx×11xa+x×12xa+x×a+xx(a+x)2dx=xsin1xa+xx×a+xa×a+x2x×a(a+x)2dx=xsin1xa+x12ax×1a+xdxI1=xa+xdxx=tdx=2xdtI1=2xa+xdt=2t2a+t2dt=2a+t2a+t2dt2adta+t2=2t2a×1atan1ta+c=2x2atan1xa+cI=xsin1xa+x12a(2x2atan1xa)+CI=xsin1xa+xax+atan1xa+C
Commented by Kunal12588 last updated on 26/Mar/20
sin^(−1) (√(x/(a+x)))=tan^(−1) (√(x/a))  so Tanmay sir your answer is also correct!
sin1xa+x=tan1xasoTanmaysiryouranswerisalsocorrect!

Leave a Reply

Your email address will not be published. Required fields are marked *