Menu Close

sin-10-cos-d-




Question Number 83266 by 09658867628 last updated on 29/Feb/20
∫sin^(10) Θcos ΘdΘ
sin10ΘcosΘdΘ
Commented by Tony Lin last updated on 29/Feb/20
let sinθ=t, dt=cosθdθ  ∫t^(10) dt  =(t^(11) /(11))+c  =(((sinθ)^(11) )/(11))+c
letsinθ=t,dt=cosθdθt10dt=t1111+c=(sinθ)1111+c
Answered by Rio Michael last updated on 29/Feb/20
−−−−−−−−−−  solution  ∫sin^(10) θ cos θ dθ  let sinθ = u ⇒ (du/dθ) = cosθ  ∴ dθ = (du/(cosθ))  ⇒ ∫sin^(10) θcosθ dθ = ∫u^(10)  cosθ (du/(cosθ))                                       = ∫u^(10) du = (u^(11) /(11)) + k  ⇒ ∫sin^(10) θ cosθ dθ = ((sin^(11) θ)/(11)) + k
solutionsin10θcosθdθletsinθ=ududθ=cosθdθ=ducosθsin10θcosθdθ=u10cosθducosθ=u10du=u1111+ksin10θcosθdθ=sin11θ11+k

Leave a Reply

Your email address will not be published. Required fields are marked *