Question Number 162649 by tounghoungko last updated on 31/Dec/21
$$\:\mathrm{sin}\:^{\mathrm{10}} \left({x}\right)+\mathrm{cos}\:^{\mathrm{10}} \left({x}\right)=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\:\mathrm{sin}\:^{\mathrm{12}} \left({x}\right)+\mathrm{cos}\:^{\mathrm{12}} \left({x}\right)=? \\ $$
Answered by Ar Brandon last updated on 31/Dec/21
$$\mathrm{S}^{\mathrm{12}} +\mathrm{C}^{\mathrm{12}} =\mathrm{S}^{\mathrm{10}} \left(\mathrm{1}−\mathrm{C}^{\mathrm{2}} \right)+\mathrm{C}^{\mathrm{10}} \left(\mathrm{1}−\mathrm{S}^{\mathrm{2}} \right) \\ $$$$=\mathrm{S}^{\mathrm{10}} +\mathrm{C}^{\mathrm{10}} −\mathrm{S}^{\mathrm{10}} \mathrm{C}^{\mathrm{2}} −\mathrm{C}^{\mathrm{10}} \mathrm{S}^{\mathrm{2}} \\ $$$$=\mathrm{S}^{\mathrm{10}} +\mathrm{C}^{\mathrm{10}} −\mathrm{S}^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \left(\mathrm{S}^{\mathrm{8}} +\mathrm{C}^{\mathrm{8}} \right) \\ $$$$=\mathrm{S}^{\mathrm{10}} +\mathrm{C}^{\mathrm{10}} −\mathrm{S}^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \left[\left(\mathrm{S}^{\mathrm{4}} +\mathrm{C}^{\mathrm{4}} \right)^{\mathrm{2}} −\mathrm{2S}^{\mathrm{4}} \mathrm{C}^{\mathrm{4}} \right] \\ $$$$=\mathrm{S}^{\mathrm{10}} +\mathrm{C}^{\mathrm{10}} −\mathrm{S}^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \left[\left(\left(\mathrm{S}^{\mathrm{2}} +\mathrm{C}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2S}^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2S}^{\mathrm{4}} \mathrm{C}^{\mathrm{4}} \right] \\ $$$$=\mathrm{S}^{\mathrm{10}} +\mathrm{C}^{\mathrm{10}} −\mathrm{S}^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \left[\mathrm{1}−\mathrm{4S}^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} +\mathrm{2S}^{\mathrm{4}} \mathrm{C}^{\mathrm{4}} \right] \\ $$$$=… \\ $$
Answered by mindispower last updated on 31/Dec/21
$${c}^{\mathrm{2}} +{s}^{\mathrm{2}} =\mathrm{1} \\ $$$${c}^{\mathrm{10}} +{s}^{\mathrm{10}} =\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\left({c}^{\mathrm{2}} +{s}^{\mathrm{2}} \right)^{\mathrm{5}} ={c}^{\mathrm{10}} +{s}^{\mathrm{10}} +\mathrm{5}{c}^{\mathrm{8}} {s}^{\mathrm{2}} +\mathrm{5}{c}^{\mathrm{2}} {s}^{\mathrm{8}} +\mathrm{10}{c}^{\mathrm{4}} {s}^{\mathrm{6}} +\mathrm{10}{s}^{\mathrm{4}} {c}^{\mathrm{6}} \\ $$$$\mathrm{1}=\frac{\mathrm{11}}{\mathrm{36}}+\mathrm{5}{c}^{\mathrm{2}} {s}^{\mathrm{2}} \left({c}^{\mathrm{6}} +{s}^{\mathrm{6}} \right)+\mathrm{10}{c}^{\mathrm{4}} {s}^{\mathrm{4}} ….\left({E}\right) \\ $$$${c}^{\mathrm{6}} +{s}^{\mathrm{6}} =\mathrm{1}−\mathrm{3}{s}^{\mathrm{2}} {c}^{\mathrm{2}} ,{X}=\left({sc}\right)^{\mathrm{2}} ..\left({E}\right)\Leftrightarrow \\ $$$$\frac{\mathrm{25}}{\mathrm{36}}=\mathrm{5}{X}\left(\mathrm{1}−\mathrm{3}{X}\right)+\mathrm{10}{X}^{\mathrm{2}} \\ $$$$\mathrm{5}{X}^{\mathrm{2}} −\mathrm{5}{X}+\frac{\mathrm{25}}{\mathrm{36}}=\mathrm{0} \\ $$$${X}=\mathrm{25}−\frac{\mathrm{125}}{\mathrm{9}}=\frac{\mathrm{100}}{\mathrm{9}} \\ $$$$\frac{\mathrm{5}+\frac{\mathrm{10}}{\mathrm{3}}}{\mathrm{10}}\mathrm{2}{p}=\frac{\mathrm{25}}{\mathrm{30}}>\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{5}−\frac{\mathrm{10}}{\mathrm{3}}}{\mathrm{10}}=\frac{\mathrm{5}}{\mathrm{30}}=\frac{\mathrm{1}}{\mathrm{6}}<\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left({sc}\right)^{\mathrm{2}} =\frac{{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}{\mathrm{4}}\leqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left({sc}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\left({s}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{6}} ={S}^{\mathrm{12}} +{C}^{\mathrm{12}} +\mathrm{6}{S}^{\mathrm{2}} {C}^{\mathrm{2}} \left({S}^{\mathrm{8}} +{C}^{\mathrm{8}} \right)+\mathrm{15}{S}^{\mathrm{4}} {C}^{\mathrm{4}} \left({S}^{\mathrm{4}} +{C}^{\mathrm{4}} \right) \\ $$$$+\mathrm{20}{C}^{\mathrm{6}} {S}^{\mathrm{6}} \\ $$$${S}^{\mathrm{8}} +{C}^{\mathrm{8}} =\left({s}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{4}} −\mathrm{4}{s}^{\mathrm{2}} {c}^{\mathrm{2}} \left({s}^{\mathrm{4}} +{c}^{\mathrm{4}} \right)−\mathrm{6}{s}^{\mathrm{4}} {s}^{\mathrm{4}} \\ $$$$=\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}.\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{7}}{\mathrm{18}} \\ $$$$\left({S}^{\mathrm{4}} +{C}^{\mathrm{4}} \right)=\left({s}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} {s}^{\mathrm{2}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${c}^{\mathrm{12}} +{s}^{\mathrm{12}} =\mathrm{1}−\frac{\mathrm{7}}{\mathrm{18}}−\frac{\mathrm{15}}{\mathrm{36}}.\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{20}.\frac{\mathrm{1}}{\mathrm{216}} \\ $$$${tchek}\:{calculus}\:{i}\:{have}\:{problemes}\:{withe}\:{my} \\ $$$${phone}\:{horrible}\:{to}\:{use}\:{tactil} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by MJS_new last updated on 31/Dec/21
$${s}^{\mathrm{10}} +{c}^{\mathrm{10}} −\frac{\mathrm{11}}{\mathrm{36}}=\mathrm{0} \\ $$$$\:\:\:\:\:\left[{c}=\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\right] \\ $$$$\mathrm{5}{s}^{\mathrm{8}} −\mathrm{10}{s}^{\mathrm{6}} +\mathrm{10}{s}^{\mathrm{4}} −\mathrm{5}{s}^{\mathrm{2}} +\frac{\mathrm{25}}{\mathrm{36}}=\mathrm{0} \\ $$$$\left({s}^{\mathrm{2}} \right)^{\mathrm{4}} −\mathrm{2}\left({s}^{\mathrm{2}} \right)^{\mathrm{3}} +\mathrm{2}\left({s}^{\mathrm{2}} \right)^{\mathrm{2}} −\left({s}^{\mathrm{2}} \right)+\frac{\mathrm{5}}{\mathrm{36}}=\mathrm{0} \\ $$$$\left(\left({s}^{\mathrm{2}} \right)^{\mathrm{2}} −\left({s}^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{6}}\right)\left(\left({s}^{\mathrm{2}} \right)^{\mathrm{2}} −\left({s}^{\mathrm{2}} \right)+\frac{\mathrm{5}}{\mathrm{6}}\right)=\mathrm{0} \\ $$$$\left({s}^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{6}} \\ $$$$\left({s}^{\mathrm{2}} \right)^{\mathrm{6}} +\left(\sqrt{\mathrm{1}−\left({s}^{\mathrm{2}} \right)}\right)^{\mathrm{12}} =\frac{\mathrm{13}}{\mathrm{54}} \\ $$