Menu Close

sin-100-x-cos-100-x-dx-




Question Number 62596 by aliesam last updated on 23/Jun/19
∫sin^(100) (x) cos^(100) (x) dx
$$\int\mathrm{sin}^{\mathrm{100}} \left(\mathrm{x}\right)\:\mathrm{cos}^{\mathrm{100}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$
Answered by MJS last updated on 23/Jun/19
∫sin^(100)  x cos^(100)  x dx=∫(sin x cos x)^(100) dx=  =(1/2^(100) )∫sin^(100)  2x dx=       [t=2x → dx=(dt/2)]  =(1/2^(101) )∫sin^(100)  t dt  now use ∫sin^n  t dt=−((cos t sin^(n−1)  t)/n)+((n−1)/n)∫sin^(n−2)  t dt
$$\int\mathrm{sin}^{\mathrm{100}} \:{x}\:\mathrm{cos}^{\mathrm{100}} \:{x}\:{dx}=\int\left(\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\right)^{\mathrm{100}} {dx}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{100}} }\int\mathrm{sin}^{\mathrm{100}} \:\mathrm{2}{x}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{2}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{101}} }\int\mathrm{sin}^{\mathrm{100}} \:{t}\:{dt} \\ $$$$\mathrm{now}\:\mathrm{use}\:\int\mathrm{sin}^{{n}} \:{t}\:{dt}=−\frac{\mathrm{cos}\:{t}\:\mathrm{sin}^{{n}−\mathrm{1}} \:{t}}{{n}}+\frac{{n}−\mathrm{1}}{{n}}\int\mathrm{sin}^{{n}−\mathrm{2}} \:{t}\:{dt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *