Menu Close

sin-101x-sinx-99-dx-




Question Number 82617 by necxxx last updated on 23/Feb/20
∫sin (101x)(sinx)^(99) dx
sin(101x)(sinx)99dx
Answered by TANMAY PANACEA last updated on 23/Feb/20
∫sin(n+1)xsin^(n−1) xdx    n=100  ∫(sinnxcosx+cosnxsinx)sin^(n−1) xdx  ∫(sinnxcosxsin^(n−1) x+cosnxsin^n x)dx  ∫(sinnx×((d(sin^n x))/dx)×(1/n)+sin^n x×((d(sinnx))/dx)×(1/n))dx  (1/n)∫(d/dx)(sinnx.sin^n x)dx  (1/n)(sinnx.sin^n x)+c  (1/(100))(sin100xsin^(100) x)+c
sin(n+1)xsinn1xdxn=100(sinnxcosx+cosnxsinx)sinn1xdx(sinnxcosxsinn1x+cosnxsinnx)dx(sinnx×d(sinnx)dx×1n+sinnx×d(sinnx)dx×1n)dx1nddx(sinnx.sinnx)dx1n(sinnx.sinnx)+c1100(sin100xsin100x)+c
Commented by peter frank last updated on 23/Feb/20
help qn 74411
helpqn74411
Commented by TANMAY PANACEA last updated on 23/Feb/20
ok let me see
okletmesee

Leave a Reply

Your email address will not be published. Required fields are marked *