Menu Close

sin-2-x-dx-1-cos-x-2-




Question Number 92960 by i jagooll last updated on 10/May/20
∫ ((sin^2 x dx)/((1+cos x)^2 ))
sin2xdx(1+cosx)2
Answered by i jagooll last updated on 10/May/20
((1−cos^2 x)/((1+cos x)^2 )) = ((1−cos x)/(1+cos x)) = tan^2 ((x/2))  = sec^2 ((x/2))−1  ∫ ((sin^2 x dx)/((1+cos x)^2 )) = ∫ [sec^2 ((x/2))−1] dx  = 2 tan ((x/2)) − x + c
1cos2x(1+cosx)2=1cosx1+cosx=tan2(x2)=sec2(x2)1sin2xdx(1+cosx)2=[sec2(x2)1]dx=2tan(x2)x+c
Commented by john santu last updated on 10/May/20
��cheerr
Answered by $@ty@m123 last updated on 10/May/20
Alternative way:  ((sin^2 x)/((1+cos x)^2 ))  =((1−cos x)/(1+cos x))×((1−cos x)/(1−cos x))  =(((1−cos x)/(sin x)))^2   =(cosec x−cot x)^2   =cosec^2 x+cot^2 x−2cosec xcot x  =2cosec^2 x−1−2cosec xcot x  ∴∫(2cosec^2 x−1−2cosec xcot x)dx  =−2cot x−x+cosec x+C
Alternativeway:sin2x(1+cosx)2=1cosx1+cosx×1cosx1cosx=(1cosxsinx)2=(cosecxcotx)2=cosec2x+cot2x2cosecxcotx=2cosec2x12cosecxcotx(2cosec2x12cosecxcotx)dx=2cotxx+cosecx+C

Leave a Reply

Your email address will not be published. Required fields are marked *