Menu Close

sin-2021-x-sin-2023-x-dx-




Question Number 163580 by mkam last updated on 08/Jan/22
∫ sin^(2021) (x) . sin(2023 x ) dx
sin2021(x).sin(2023x)dx
Commented by mkam last updated on 08/Jan/22
??????
??????
Answered by abdullahhhhh last updated on 08/Jan/22
I=∫sin(2022x+x) sin^(2021) x dx  ∫sin^(2021) x [sin(2022x)cosx(x)+cosx(2022x) sinx]  I=∫[cosx sin^(2021) x sin(2022x)] dx+∫sin^(2022) x cos(2022x) dx  I=I_1 (By parts)+I_2   I_1 =∫cosx sin^(2021) x sin(2022x) dx  u=sin(2022x)            dv =cosx sin^(2021) x  du=2022 cos(2022x)    v=((sin^(2022) x)/(2022))  (1/(2022))  sin(2022x) sin^(2022) x−∫cos(2022) sin^(2022) x dx  I_1 =((sin(2022x) sin^(2022) x)/(2022))−I_2   I=((sin(2022x) sin^(2022) x)/(2022))+C
I=sin(2022x+x)sin2021xdxsin2021x[sin(2022x)cosx(x)+cosx(2022x)sinx]I=[cosxsin2021xsin(2022x)]dx+sin2022xcos(2022x)dxI=I1(Byparts)+I2I1=cosxsin2021xsin(2022x)dxu=sin(2022x)dv=cosxsin2021xdu=2022cos(2022x)v=sin2022x202212022sin(2022x)sin2022xcos(2022)sin2022xdxI1=sin(2022x)sin2022x2022I2I=sin(2022x)sin2022x2022+C

Leave a Reply

Your email address will not be published. Required fields are marked *