sin-2021-x-sin-2023-x-dx- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 163580 by mkam last updated on 08/Jan/22 ∫sin2021(x).sin(2023x)dx Commented by mkam last updated on 08/Jan/22 ?????? Answered by abdullahhhhh last updated on 08/Jan/22 I=∫sin(2022x+x)sin2021xdx∫sin2021x[sin(2022x)cosx(x)+cosx(2022x)sinx]I=∫[cosxsin2021xsin(2022x)]dx+∫sin2022xcos(2022x)dxI=I1(Byparts)+I2I1=∫cosxsin2021xsin(2022x)dxu=sin(2022x)dv=cosxsin2021xdu=2022cos(2022x)v=sin2022x202212022sin(2022x)sin2022x−∫cos(2022)sin2022xdxI1=sin(2022x)sin2022x2022−I2I=sin(2022x)sin2022x2022+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-32510Next Next post: Question-163587 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.