Menu Close

sin-2x-cos-xd-x-




Question Number 53051 by Abror last updated on 16/Jan/19
∫sin (2x)cos xd(x)=
sin(2x)cosxd(x)=
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jan/19
(1/2)∫2sin2xcosxdx  =(1/2)∫(sin3x+sinx)dx  =(1/2)[((−cos3x)/3)+((−cosx)/)]+c
122sin2xcosxdx=12(sin3x+sinx)dx=12[cos3x3+cosx]+c
Answered by kaivan.ahmadi last updated on 16/Jan/19
∫2sinxcosx.cosxdx=2∫sinx.cos^2 xdx  u=cosx⇒du=−sinxdx⇒  −2∫u^2 du=−2(u^3 /3)+C=−(2/3)cos^3 x+C
2sinxcosx.cosxdx=2sinx.cos2xdxu=cosxdu=sinxdx2u2du=2u33+C=23cos3x+C

Leave a Reply

Your email address will not be published. Required fields are marked *