Menu Close

sin-2x-pi-4-dx-




Question Number 146285 by mathdanisur last updated on 12/Jul/21
∫ sin(2x - (π/4)) dx = ?
sin(2xπ4)dx=?
Commented by gsk2684 last updated on 12/Jul/21
what are you studying now?
whatareyoustudyingnow?
Commented by mathdanisur last updated on 12/Jul/21
these
these
Answered by gsk2684 last updated on 12/Jul/21
use the formula   ∫sin (ax+b) dx=−((cos (ax+b))/a)
usetheformulasin(ax+b)dx=cos(ax+b)a
Commented by Ar Brandon last updated on 12/Jul/21
I=∫sin(ax+b)dx  Let u=ax+b ⇒du=adx  I=∫sin(ax+b)dx=(1/a)∫sin(u)du    =−((cos(u))/a)+C=−((cos(ax+b))/a)+C
I=sin(ax+b)dxLetu=ax+bdu=adxI=sin(ax+b)dx=1asin(u)du=cos(u)a+C=cos(ax+b)a+C
Commented by mathdanisur last updated on 13/Jul/21
thanks Ser
thanksSer
Answered by puissant last updated on 12/Jul/21
=∫sin(2x)cos(π/4)−cos(2x)sin(π/4) dx  =((√2)/2)∫(sin(2x)−cos(2x)) dx  =((√2)/2)[−(1/2)cos(2x)−(1/2)sin(2x)]+c  I=−((√2)/4)(cos(2x)+sin(2x))+c..
=sin(2x)cosπ4cos(2x)sinπ4dx=22(sin(2x)cos(2x))dx=22[12cos(2x)12sin(2x)]+cI=24(cos(2x)+sin(2x))+c..
Commented by mathdanisur last updated on 12/Jul/21
Thank you Ser
ThankyouSer
Answered by Ar Brandon last updated on 12/Jul/21
I=∫sin(2x+(π/4))dx    =−(1/2)cos(2x+(π/4))+C
I=sin(2x+π4)dx=12cos(2x+π4)+C
Commented by mathdanisur last updated on 13/Jul/21
thanks Ser
thanksSer

Leave a Reply

Your email address will not be published. Required fields are marked *