Menu Close

sin-2x-sin-2y-5-4-cos-x-y-2sin-x-y-where-0-lt-x-y-lt-pi-2-cos-2-x-y-o-hans-




Question Number 109715 by bobhans last updated on 25/Aug/20
 { ((sin 2x+sin 2y=(5/4))),((cos (x−y)=2sin (x+y))) :}where 0<x,y<(π/2)       cos^2 (x+y) = ?        △((♭o♭)/(hans))▽
$$\begin{cases}{\mathrm{sin}\:\mathrm{2}{x}+\mathrm{sin}\:\mathrm{2}{y}=\frac{\mathrm{5}}{\mathrm{4}}}\\{\mathrm{cos}\:\left({x}−{y}\right)=\mathrm{2sin}\:\left({x}+{y}\right)}\end{cases}{where}\:\mathrm{0}<{x},{y}<\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \left({x}+{y}\right)\:=\:? \\ $$$$\:\:\:\:\:\:\bigtriangleup\frac{\flat{o}\flat}{{hans}}\bigtriangledown \\ $$
Answered by nimnim last updated on 25/Aug/20
⇒2sin(x+y)cos(x−y)=(5/4)  ⇒2sin(x+y)2sin(x+y)=(5/4)  ⇒sin^2 (x+y)=(5/(16))  ⇒1−cos^2 (x+y)=(5/(16))  ⇒cos^2 (x+y)=((11)/(16))★    Am I right Sir??
$$\Rightarrow\mathrm{2sin}\left({x}+{y}\right)\mathrm{cos}\left({x}−{y}\right)=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{2sin}\left({x}+{y}\right)\mathrm{2sin}\left({x}+{y}\right)=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \left({x}+{y}\right)=\frac{\mathrm{5}}{\mathrm{16}} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left({x}+{y}\right)=\frac{\mathrm{5}}{\mathrm{16}} \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{2}} \left({x}+{y}\right)=\frac{\mathrm{11}}{\mathrm{16}}\bigstar \\ $$$$\:\:\mathrm{Am}\:\mathrm{I}\:\mathrm{right}\:\mathrm{Sir}?? \\ $$
Commented by bobhans last updated on 25/Aug/20
good....santuyy
$${good}….{santuyy} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *