Question Number 43861 by Tinkutara last updated on 16/Sep/18

Commented by Tinkutara last updated on 16/Sep/18

Commented by maxmathsup by imad last updated on 16/Sep/18

Commented by Tinkutara last updated on 16/Sep/18
Thank you very much Sir! I got the answer. ��������
Commented by maxmathsup by imad last updated on 16/Sep/18

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Sep/18
![t^2 =x ∫sin^3 t×2tdt sin3t=3sint−4sin^3 t ∫(((3sint−sin3t)/4))×2t dt (3/2)∫sint.tdt−(1/2)∫sin3t×t dt (3/2)I_1 −(1/2)I_2 ∫sint ×t dt t×−cost−∫[(dt/dt)∫sint dt]dt −tcost−∫−costdt =−tcost+sint (3/2)(−tcost+sint) (3/2)((√x) cos(√x) +sin(√x) ) ∫tsin3tdt =t×((−cos3t)/3)−∫[(dt/dt)∫sin3tdt]dt =((−tcos3t)/3)+∫((cos3t)/3) =((−tcos3t)/3)+((sin3t)/9) =((3sint−4sin^3 t)/9)+(((−t)(4cos^3 t−3cost))/3) =((3sin(√x) −4sin^3 (√x) )/9)+(((−(√x) )(4cos^3 (√x) −3cos(√x) ))/3) so (1/2)I_2 ((3sin(√x) −4sin^3 (√x))/(18))+(((−(√x) )(4cos^3 (√x) −3cos(√x) ))/6) answer is (3/2)I_1 −(1/2)I_2 (3/2)((√x) cos(√x) +sin(√x) )−{((3sin(√x) −4sin^3 (√x) )/(18))+(((−(√x) )(4cos^3 (√x) −3cos(√x) ))/6)}](https://www.tinkutara.com/question/Q43870.png)
Commented by Tinkutara last updated on 16/Sep/18
Thank you very much Sir! I got the answer. ��������