Menu Close

sin-3-x-dx-




Question Number 43861 by Tinkutara last updated on 16/Sep/18
∫sin^3  (√x) dx
sin3xdx
Commented by Tinkutara last updated on 16/Sep/18
Answer given is  −3x^(3/2) cos^3  (√x) +6x^(1/3) sin^3  (√x) +  6cos^3  (√x)+C  Please tell if the answer is correct  or wrong!
Answergivenis3x3/2cos3x+6x1/3sin3x+6cos3x+CPleasetelliftheansweriscorrectorwrong!
Commented by maxmathsup by imad last updated on 16/Sep/18
changement (√x)=t give  I = ∫ sin^3 (t)(2t)dt  =2 ∫ t sin^3 (t)dt  but sin^3 (t)=(((e^(it)  −e^(−it) )/(2i)))^3  =(1/(−8i)){ e^(it)  −e^(−it) }^3   =(i/8){ Σ_(k=0) ^3  C_3 ^k   e^(ikt)  (−1)^(3−k) e^(−i(3−k)t) } =(i/8) Σ_(k=0) ^3  (−1)^(3−k)  C_3 ^k    e^(i(2k−3)t)   =(i/8){  −e^(−3it)    +3 e^(−it)   −3 e^(it)   +e^(i3t) }=(i/8){ 2isin(3t) −6i sin(t)}  =−(1/4)sin(3t) +(3/4)sin(t) ⇒  I = 2 ∫  t ((3/4)sint −(1/4)sin(3t))dt=(3/2) ∫ t sint dt −(1/2) ∫ t sin(3t)dt  but  =(3/2) H −(1/2) K  by parte H =−t cost +∫  cost =−t cost +sint also  K =−(t/3)cos(3t)  + ∫ (1/3)cos(3t)dt =−(t/3)cos(3t) +(1/9)sin(3t) ⇒  I =−(3/2)t cost +(3/2)sint  +(t/6)cos(3t) −(1/(18))sin(3t) +c  =−(3/2)(√x)cos((√x)) +(3/2)sin((√x)) +((√x)/6)cos(3(√x))−(1/(18))sin(3(√x)) +c .
changementx=tgiveI=sin3(t)(2t)dt=2tsin3(t)dtbutsin3(t)=(eiteit2i)3=18i{eiteit}3=i8{k=03C3keikt(1)3kei(3k)t}=i8k=03(1)3kC3kei(2k3)t=i8{e3it+3eit3eit+ei3t}=i8{2isin(3t)6isin(t)}=14sin(3t)+34sin(t)I=2t(34sint14sin(3t))dt=32tsintdt12tsin(3t)dtbut=32H12KbyparteH=tcost+cost=tcost+sintalsoK=t3cos(3t)+13cos(3t)dt=t3cos(3t)+19sin(3t)I=32tcost+32sint+t6cos(3t)118sin(3t)+c=32xcos(x)+32sin(x)+x6cos(3x)118sin(3x)+c.
Commented by Tinkutara last updated on 16/Sep/18
Thank you very much Sir! I got the answer. ��������
Commented by maxmathsup by imad last updated on 16/Sep/18
you are welcome sir.
youarewelcomesir.
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Sep/18
t^2 =x  ∫sin^3 t×2tdt  sin3t=3sint−4sin^3 t  ∫(((3sint−sin3t)/4))×2t dt  (3/2)∫sint.tdt−(1/2)∫sin3t×t dt  (3/2)I_1 −(1/2)I_2   ∫sint ×t dt  t×−cost−∫[(dt/dt)∫sint dt]dt  −tcost−∫−costdt  =−tcost+sint  (3/2)(−tcost+sint)  (3/2)((√x) cos(√x) +sin(√x) )  ∫tsin3tdt  =t×((−cos3t)/3)−∫[(dt/dt)∫sin3tdt]dt  =((−tcos3t)/3)+∫((cos3t)/3)  =((−tcos3t)/3)+((sin3t)/9)  =((3sint−4sin^3 t)/9)+(((−t)(4cos^3 t−3cost))/3)  =((3sin(√x) −4sin^3 (√x) )/9)+(((−(√x) )(4cos^3 (√x) −3cos(√x) ))/3)  so  (1/2)I_2   ((3sin(√x) −4sin^3 (√x))/(18))+(((−(√x) )(4cos^3 (√x) −3cos(√x) ))/6)  answer is (3/2)I_1 −(1/2)I_2   (3/2)((√x) cos(√x) +sin(√x) )−{((3sin(√x) −4sin^3 (√x) )/(18))+(((−(√x) )(4cos^3 (√x) −3cos(√x) ))/6)}
t2=xsin3t×2tdtsin3t=3sint4sin3t(3sintsin3t4)×2tdt32sint.tdt12sin3t×tdt32I112I2sint×tdtt×cost[dtdtsintdt]dttcostcostdt=tcost+sint32(tcost+sint)32(xcosx+sinx)tsin3tdt=t×cos3t3[dtdtsin3tdt]dt=tcos3t3+cos3t3=tcos3t3+sin3t9=3sint4sin3t9+(t)(4cos3t3cost)3=3sinx4sin3x9+(x)(4cos3x3cosx)3so12I23sinx4sin3x18+(x)(4cos3x3cosx)6answeris32I112I232(xcosx+sinx){3sinx4sin3x18+(x)(4cos3x3cosx)6}
Commented by Tinkutara last updated on 16/Sep/18
Thank you very much Sir! I got the answer. ��������

Leave a Reply

Your email address will not be published. Required fields are marked *