Menu Close

sin-3-xcos-2-xdx-




Question Number 167490 by mathlove last updated on 18/Mar/22
∫sin^3 xcos^2 xdx=?
$$\int{sin}^{\mathrm{3}} {xcos}^{\mathrm{2}} {xdx}=? \\ $$
Answered by nimnim last updated on 18/Mar/22
I=∫sin^2 cos^2 xsinxdx    =∫(1−cos^2 x)cos^2 xsinxdx    =∫cos^2 xsinxdx−∫cos^4 xsinxdx    =−(1/3)cos^3 x+(1/5)cos^5 x+C
$${I}=\int{sin}^{\mathrm{2}} {cos}^{\mathrm{2}} {xsinxdx} \\ $$$$\:\:=\int\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right){cos}^{\mathrm{2}} {xsinxdx} \\ $$$$\:\:=\int{cos}^{\mathrm{2}} {xsinxdx}−\int{cos}^{\mathrm{4}} {xsinxdx} \\ $$$$\:\:=−\frac{\mathrm{1}}{\mathrm{3}}{cos}^{\mathrm{3}} {x}+\frac{\mathrm{1}}{\mathrm{5}}{cos}^{\mathrm{5}} {x}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *