sin-3pi-2-cos-x-1-2- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 86111 by john santu last updated on 27/Mar/20 sin(3π2cosx)=−12 Commented by jagoll last updated on 27/Mar/20 ⇔sin(3π2cosx)=sin(−π6)3π2cosx=−π6+2kπcosx=23π{−π6+2kπ}cosx=−19+4k3x=cos−1(12k−19)+2nπ Answered by TANMAY PANACEA. last updated on 27/Mar/20 sin(3π2cosx)=sin(π+π6)3π2cosx=7π6cosx=76×23=79=cosαx=2nπ±α[α=cos−1(79)]★sin(3π2cosx)=−12=sin(−π6)3π2cosx=−π6cosx=−19=cosβx=2nπ±β[β=cos−1(−19)] Answered by mr W last updated on 27/Mar/20 sin(3π2cosx)=−12⇒3π2cosx=nπ−(−1)nπ6⇒cosx=23[n−(−1)n16]⇒−1⩽23[n−(−1)n16]⩽1⇒n=−1,0,1⇒cosx=23[n−(−1)n16]=−59,−19,79⇒x=(2k+1)π±cos−159⇒x=(2k+1)π±cos−119⇒x=2kπ±cos−179 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-tan-1-1-tan-2-1-tan-45-2-n-1-find-n-Next Next post: 1-Determine-the-following-if-it-is-convergent-or-divergent-n-1-sin-n-n-2-n-1-sin-n-p-n-p-p-R-find-the-range-of-p-when-it-is-convergent- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.