Menu Close

sin-3pi-2-cos-x-1-2-




Question Number 86111 by john santu last updated on 27/Mar/20
sin (((3π)/2)cos x) = −(1/2)
sin(3π2cosx)=12
Commented by jagoll last updated on 27/Mar/20
⇔sin (((3π)/2)cos x) = sin (−(π/6))  ((3π)/2)cos x = −(π/6) + 2kπ  cos x = (2/(3π)) {−(π/6)+2kπ}  cos x = −(1/9)+((4k)/3)  x = cos^(−1) (((12k−1)/9)) + 2nπ
sin(3π2cosx)=sin(π6)3π2cosx=π6+2kπcosx=23π{π6+2kπ}cosx=19+4k3x=cos1(12k19)+2nπ
Answered by TANMAY PANACEA. last updated on 27/Mar/20
sin(((3π)/2)cosx)=sin(π+(π/6))  ((3π)/2)cosx=((7π)/6)  cosx=(7/6)×(2/3)=(7/9)=cosα  x=2nπ±α     [α=cos^(−1) ((7/9))]  ★  sin(((3π)/2)cosx)=−(1/2)=sin(((−π)/6))  ((3π)/2)cosx=((−π)/6)       cosx=((−1)/9)=cosβ  x=2nπ±β   [β=cos^(−1) (((−1)/9))]
sin(3π2cosx)=sin(π+π6)3π2cosx=7π6cosx=76×23=79=cosαx=2nπ±α[α=cos1(79)]sin(3π2cosx)=12=sin(π6)3π2cosx=π6cosx=19=cosβx=2nπ±β[β=cos1(19)]
Answered by mr W last updated on 27/Mar/20
sin (((3π)/2)cos x) = −(1/2)  ⇒((3π)/2)cos x = nπ−(−1)^n (π/6)  ⇒cos x =(2/3)[n−(−1)^n (1/6)]  ⇒−1≤(2/3)[n−(−1)^n (1/6)]≤1  ⇒n=−1, 0, 1  ⇒cos x =(2/3)[n−(−1)^n (1/6)]=−(5/9), −(1/9),  (7/9)  ⇒x=(2k+1)π±cos^(−1) (5/9)  ⇒x=(2k+1)π±cos^(−1) (1/9)  ⇒x=2kπ±cos^(−1) (7/9)
sin(3π2cosx)=123π2cosx=nπ(1)nπ6cosx=23[n(1)n16]123[n(1)n16]1n=1,0,1cosx=23[n(1)n16]=59,19,79x=(2k+1)π±cos159x=(2k+1)π±cos119x=2kπ±cos179

Leave a Reply

Your email address will not be published. Required fields are marked *