Menu Close

sin-4-2-cos-4-2-1-2-




Question Number 17080 by Kunal kumar shukla last updated on 30/Jun/17
sin^4 θ/2+cos^4 θ/2≥1/2
sin4θ/2+cos4θ/21/2
Answered by virus last updated on 30/Jun/17
1−2sin^2 (θ/2)cos^2 (θ/2)≥1/2  2−4sin^2 (θ/2)cos^2 (θ/2)≥1  2−sin^2 θ≥1  1−sin^2 θ≥0  cos^2 θ≥0  ∴θ∈(2n+1)π/2
12sin2(θ/2)cos2(θ/2)1/224sin2(θ/2)cos2(θ/2)12sin2θ11sin2θ0cos2θ0θ(2n+1)π/2
Answered by mrW1 last updated on 02/Jul/17
sin^4  (θ/2)+cos^4  (θ/2)  =sin^4  (θ/2)+(1−sin^2  (θ/2))^2   =sin^4  (θ/2)+1−2sin^2  (θ/2)+sin^4  (θ/2)  =2(sin^4  (θ/2)−sin^2  (θ/2))+1  =2(sin^4  (θ/2)−sin^2  (θ/2)+(1/4))+(1/2)  =(1/2)+2(sin^2  (θ/2)−(1/2))^2   =(1/2)+2(((1−cos θ)/2)−(1/2))^2   =(1/2)+((cos^2  θ)/2)  =(1/2)(1+cos^2  θ)  ≥(1/2)
sin4θ2+cos4θ2=sin4θ2+(1sin2θ2)2=sin4θ2+12sin2θ2+sin4θ2=2(sin4θ2sin2θ2)+1=2(sin4θ2sin2θ2+14)+12=12+2(sin2θ212)2=12+2(1cosθ212)2=12+cos2θ2=12(1+cos2θ)12

Leave a Reply

Your email address will not be published. Required fields are marked *