Menu Close

sin-4-x-sin-4-x-pi-4-1-4-x-0-2pi-




Question Number 87488 by jagoll last updated on 04/Apr/20
sin^4 x + sin^4 (x+(π/4)) = (1/4)  x ∈ [ 0,2π ]
sin4x+sin4(x+π4)=14x[0,2π]
Commented by john santu last updated on 05/Apr/20
(2sin^2  x)^2 +(2sin^2 (x+(π/4)))^2 = 1   (1−cos 2x)^2 + (1−cos (2x+(π/2)))^2 =1  (1−cos 2x)^2  + (1+sin 2x)^2  = 1  1−2cos 2x +cos^2  2x+1+2sin 2x +sin^2  2x = 1  2sin 2x−2cos 2x = −2  cos 2x−sin 2x = 1   cos (2x+(π/4)) = (1/( (√2))) = cos (π/4)  ⇒2x = −(π/4) ± (π/4)+2πn , n ∈Z  ⇒ x = −(π/8) ± (π/8) + πn   (+) ⇒ x = 0, π ,2π  (−)⇒x = −(π/4)+πn ; x = ((3π)/4), ((7π)/4)
(2sin2x)2+(2sin2(x+π4))2=1(1cos2x)2+(1cos(2x+π2))2=1(1cos2x)2+(1+sin2x)2=112cos2x+cos22x+1+2sin2x+sin22x=12sin2x2cos2x=2cos2xsin2x=1cos(2x+π4)=12=cosπ42x=π4±π4+2πn,nZx=π8±π8+πn(+)x=0,π,2π()x=π4+πn;x=3π4,7π4
Answered by mind is power last updated on 04/Apr/20
sin(x+(π/4))=((√2)/2)(sin(x)+cos(x))  sin^2 (x+(π/4))=(1/2)(1+sin(2x))  sin^4 (x+(π/4))=(1/4)(1+sin^2 (2x)+2sin(2x))  ⇔sin^4 (x)+((2sin(2x)+sin^2 (2x))/4)=0  ⇔sin(x)(4sin^3 (x)+4cos(x)+4sin(x)cos^2 (x))=0  ⇔4sin(x)(sin(x)+cos(x))=0  ⇒4(√2)sin(x)sin(x+(π/4))=0  x∈{0,π,2π,((3π)/4),((7π)/4)}
sin(x+π4)=22(sin(x)+cos(x))sin2(x+π4)=12(1+sin(2x))sin4(x+π4)=14(1+sin2(2x)+2sin(2x))sin4(x)+2sin(2x)+sin2(2x)4=0sin(x)(4sin3(x)+4cos(x)+4sin(x)cos2(x))=04sin(x)(sin(x)+cos(x))=042sin(x)sin(x+π4)=0x{0,π,2π,3π4,7π4}
Answered by TANMAY PANACEA. last updated on 04/Apr/20
(((1−cos2x)/2))^2 +(((1−cos((π/2)+2x))/2))^2 =(1/4)  ((1−2cos2x+cos^2 2x)/4)+(((1+sin2x)/2))^2 =(1/4)  1−2cos2x+cos^2 2x+1+2sin2x+sin^2 2x=1  3−2cos2x+2sin2x=1  1−cos2x+sin2x=0  1=(cos2x−sin2x)^2   1=1−sin4x  sin4x=0=sin0→x=0
(1cos2x2)2+(1cos(π2+2x)2)2=1412cos2x+cos22x4+(1+sin2x2)2=1412cos2x+cos22x+1+2sin2x+sin22x=132cos2x+2sin2x=11cos2x+sin2x=01=(cos2xsin2x)21=1sin4xsin4x=0=sin0x=0

Leave a Reply

Your email address will not be published. Required fields are marked *