Menu Close

sin-4x-sin-4-x-cos-4-x-dx-




Question Number 128408 by bramlexs22 last updated on 07/Jan/21
ρ = ∫ ((sin (4x))/(sin^4 (x)+cos^4 (x))) dx
ρ=sin(4x)sin4(x)+cos4(x)dx
Answered by mr W last updated on 07/Jan/21
=∫((sin (4x))/(1−2 sin^2  x cos^2  x))dx  =∫((sin (4x))/(1−(1/2)sin^2  (2x)))dx  =∫((sin (4x))/(3+cos (4x)))d(4x)  =−∫(1/(3+cos (4x)))d(3+cos (4x))  =−ln [3+cos (4x)]+C
=sin(4x)12sin2xcos2xdx=sin(4x)112sin2(2x)dx=sin(4x)3+cos(4x)d(4x)=13+cos(4x)d(3+cos(4x))=ln[3+cos(4x)]+C
Commented by bramlexs22 last updated on 07/Jan/21
��✍️

Leave a Reply

Your email address will not be published. Required fields are marked *