Question Number 49816 by Aditya789 last updated on 11/Dec/18
$$\frac{\mathrm{sin}^{\mathrm{6}} \mathrm{x}−\mathrm{cos}^{\mathrm{6}} \mathrm{x}}{\mathrm{sin}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{x}}.\mathrm{intregrate} \\ $$
Answered by AdqhK ÐQeQqQ last updated on 11/Dec/18
$$\int\frac{\left({sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} −\left({cos}^{\mathrm{2}} {x}\right)^{\mathrm{3}} }{{sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$\int\frac{\left({sin}^{\mathrm{2}} {x}−{cos}^{\mathrm{2}} {x}\right)\left({sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}+{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\right)}{{sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$\int\frac{−{cos}\mathrm{2}{x}\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\right)}{{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}}{dx}\:\:\:\:\:\:\:\:\:\left\{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\right\} \\ $$$$\int\frac{\left(\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}\right)\left(\mathrm{1}−{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\right).\mathrm{4}}{\mathrm{4}{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}}{dx} \\ $$$$\int\frac{\left(\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}\right)\left(\mathrm{4}−{sin}^{\mathrm{2}} \mathrm{2}{x}\right)}{{sin}^{\mathrm{2}} \mathrm{2}{x}}{dx} \\ $$$$\int\left\{\frac{\mathrm{8}{cos}^{\mathrm{2}} {x}}{\mathrm{4}{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}}−\frac{\mathrm{2}{cos}^{\mathrm{2}} {xsin}^{\mathrm{2}} \mathrm{2}{x}}{{sin}^{\mathrm{2}} \mathrm{2}{x}}{dx}−\frac{\mathrm{4}}{{sin}^{\mathrm{2}} \mathrm{2}{x}}+\frac{{sin}^{\mathrm{2}} \mathrm{2}{x}}{{sin}^{\mathrm{2}} \mathrm{2}{x}}\right\}{dx} \\ $$$$\int\left\{\mathrm{2}{cosec}^{\mathrm{2}} {x}−\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{4}{cosec}^{\mathrm{2}} {x}+\mathrm{1}\right\}{dx} \\ $$$$\int\left(\mathrm{1}−\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{2}{cosec}^{\mathrm{2}} {x}\right){dx} \\ $$$$\int−{cos}\mathrm{2}{xdx}+\int−\mathrm{2}{cosec}^{\mathrm{2}} {xdx} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{x}+\mathrm{2}{cotx}+{C} \\ $$$${pls}\:\:{cheak}……. \\ $$
Commented by arvinddayama01@gmail.com. last updated on 11/Dec/18
$${no}\:{sir}\:{this}\:{is}\:{wrong}\:{because} \\ $$$${i}\:{think}\:{mistakes}\:{in}\:\mathrm{4}^{{th}} {last}\:{line} \\ $$$$\int\left(\mathrm{2}{cosec}^{\mathrm{2}} {x}+\mathrm{1}−\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{4}{cosec}^{\mathrm{2}} \mathrm{2}{x}\right){dx} \\ $$$$−\mathrm{2}{cotx}−\mathrm{1}/\mathrm{2}\:{sin}\mathrm{2}{x}+\mathrm{2}{cot}\mathrm{2}{x}+{C} \\ $$
Commented by AdqhK ÐQeQqQ last updated on 11/Dec/18
$${sorry}\: \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
$$\int\frac{{cos}^{\mathrm{6}} {x}\left({tan}^{\mathrm{6}} {x}−\mathrm{1}\right)}{{tan}^{\mathrm{2}} {x}×{cos}^{\mathrm{4}} {x}}{dx} \\ $$$$\int\frac{{tan}^{\mathrm{6}} {x}−\mathrm{1}}{{tan}^{\mathrm{2}} {x}}×\frac{\mathrm{1}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)}{dx} \\ $$$$\int\frac{{tan}^{\mathrm{6}} {x}−\mathrm{1}}{{tan}^{\mathrm{2}} {x}}×\frac{\mathrm{1}+{tan}^{\mathrm{2}} {x}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{dx} \\ $$$$\int\frac{{tan}^{\mathrm{6}} {x}−\mathrm{1}}{{tan}^{\mathrm{2}} {x}}×{sec}^{\mathrm{2}} {x}×\frac{\mathrm{1}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{dx} \\ $$$${k}={tanx}\:\:\:{dk}={sec}^{\mathrm{2}} {xdx} \\ $$$$\int\frac{{k}^{\mathrm{6}} −\mathrm{1}}{{k}^{\mathrm{2}} }×\frac{\mathrm{1}}{\left(\mathrm{1}+{k}^{\mathrm{2}} \right)^{\mathrm{2}} }{dk} \\ $$$$\int\frac{\left({k}^{\mathrm{2}} −\mathrm{1}\right)\left({k}^{\mathrm{4}} +{k}^{\mathrm{2}} +\mathrm{1}\right)}{{k}^{\mathrm{2}} \left({k}^{\mathrm{4}} +\mathrm{2}{k}^{\mathrm{2}} +\mathrm{1}\right)}{dk} \\ $$$$\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{k}^{\mathrm{2}} }}{}×\frac{{k}^{\mathrm{2}} \left({k}^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)}{{k}^{\mathrm{2}} \left({k}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)}{dk} \\ $$$$\int\left(\mathrm{1}−\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)×\frac{\left\{\left({k}+\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} −\mathrm{2}+\mathrm{1}\right\}}{\left({k}+\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} }{dk} \\ $$$${p}={k}+\frac{\mathrm{1}}{{k}}\:\:{dp}=\left(\mathrm{1}−\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right){dk} \\ $$$$\int\frac{{p}^{\mathrm{2}} −\mathrm{1}}{{p}^{\mathrm{2}} }{dp} \\ $$$$\int{dp}−\int{p}^{−\mathrm{2}} {dp} \\ $$$$={p}−\left(\frac{{p}^{−\mathrm{2}+\mathrm{1}} }{−\mathrm{2}+\mathrm{1}}\right)+{c} \\ $$$$={p}+\frac{\mathrm{1}}{{p}}+{c} \\ $$$$=\left({k}+\frac{\mathrm{1}}{{k}}\right)+\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{{k}}\right)}+{c} \\ $$$$=\left({tanx}+\frac{\mathrm{1}}{{tanx}}\right)+\frac{\mathrm{1}}{\left({tanx}+\frac{\mathrm{1}}{{tanx}}\right)}+{c} \\ $$$${pls}\:{check}…. \\ $$$$ \\ $$$$ \\ $$