Question Number 95326 by bobhans last updated on 24/May/20
$$\mathrm{sin}\:\mathrm{72}^{\mathrm{o}} \:=\:\mathrm{p}\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{48}^{\mathrm{o}} \\ $$$$\mathrm{find}\:\mathrm{tan}\:\mathrm{12}^{\mathrm{o}} \:? \\ $$
Commented by mr W last updated on 24/May/20
$$\mathrm{sin}\:\mathrm{72}°=\mathrm{sin}\:\left(\mathrm{60}°+\mathrm{12}°\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}\mathrm{cos}\:\mathrm{12}°+\mathrm{sin}\:\mathrm{12}°\right) \\ $$$$\mathrm{cos}\:\mathrm{48}°=\mathrm{cos}\:\left(\mathrm{60}°−\mathrm{12}°\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\mathrm{12}°+\sqrt{\mathrm{3}}\mathrm{sin}\:\mathrm{12}°\right) \\ $$$$\mathrm{sin}\:\mathrm{72}^{\mathrm{o}} \:=\:\mathrm{p}\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{48}^{\mathrm{o}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}\mathrm{cos}\:\mathrm{12}°+\mathrm{sin}\:\mathrm{12}°\right)={p}\sqrt{\mathrm{3}}\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\mathrm{12}°+\sqrt{\mathrm{3}}\mathrm{sin}\:\mathrm{12}°\right) \\ $$$$\sqrt{\mathrm{3}}+\mathrm{tan}\:\mathrm{12}°={p}\sqrt{\mathrm{3}}\left(\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{tan}\:\mathrm{12}°\right) \\ $$$$\sqrt{\mathrm{3}}\left(\mathrm{1}−{p}\right)=\left(\mathrm{3}{p}−\mathrm{1}\right)\mathrm{tan}\:\mathrm{12}° \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{12}°=\frac{\left(\mathrm{1}−{p}\right)\sqrt{\mathrm{3}}}{\mathrm{3}{p}−\mathrm{1}} \\ $$
Commented by bobhans last updated on 24/May/20
$$\mathrm{yes}… \\ $$
Commented by bobhans last updated on 24/May/20
$$\mathrm{how}\:\mathrm{with}\:\mathrm{qn}\:\mathrm{95260} \\ $$
Commented by bobhans last updated on 24/May/20
$$\mathrm{sir}\:\mathrm{jagoll}\:\mathrm{asking}\:\mathrm{to}\:\mathrm{you} \\ $$