Menu Close

sin-8-x-cos-8-x-1-2sin-2-x-cos-2-x-a-1-2-sin-2x-b-1-2-sin-2x-c-None-




Question Number 49746 by rahul 19 last updated on 10/Dec/18
∫((sin^8 x−cos^8 x)/(1−2sin^2 x.cos^2 x)) = ?  a) ((−1)/2)sin 2x   b)(1/2)sin 2x   c)None.
$$\int\frac{\mathrm{sin}^{\mathrm{8}} {x}−\mathrm{cos}^{\mathrm{8}} {x}}{\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} {x}.\mathrm{cos}^{\mathrm{2}} {x}}\:=\:? \\ $$$$\left.{a}\left.\right)\left.\:\frac{−\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\:\:\:{b}\right)\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\:\:\:{c}\right){None}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Dec/18
sin^8 x−cos^8 x=(sin^4 x+cos^4 x)(sin^4 x−cos^4 x)  ={(sin^2 x+cos^2 x)^2 −2sin^2 xcos^2 x}{sin^2 x−cos^2 x}  =(1−2sin^2 xcos^2 x)×(−cos2x)  ∫((−cos2x)/)dx  =((−1)/2)×((sin2x)/)+c
$${sin}^{\mathrm{8}} {x}−{cos}^{\mathrm{8}} {x}=\left({sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}\right)\left({sin}^{\mathrm{4}} {x}−{cos}^{\mathrm{4}} {x}\right) \\ $$$$=\left\{\left({sin}^{\mathrm{2}} {x}+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} −\mathrm{2}{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\right\}\left\{{sin}^{\mathrm{2}} {x}−{cos}^{\mathrm{2}} {x}\right\} \\ $$$$=\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\right)×\left(−{cos}\mathrm{2}{x}\right) \\ $$$$\int\frac{−{cos}\mathrm{2}{x}}{}{dx} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}×\frac{{sin}\mathrm{2}{x}}{}+{c} \\ $$$$ \\ $$
Commented by rahul 19 last updated on 10/Dec/18
thank you sir! ��

Leave a Reply

Your email address will not be published. Required fields are marked *