Menu Close

sin-pi-14-sin-2pi-14-sin-3pi-14-sin-6pi-14-




Question Number 118899 by bobhans last updated on 20/Oct/20
 sin ((π/(14)))sin (((2π)/(14)))sin (((3π)/(14)))...sin (((6π)/(14)))=?
sin(π14)sin(2π14)sin(3π14)sin(6π14)=?
Answered by TANMAY PANACEA last updated on 20/Oct/20
taking help from S.L Loney Trigonometry  2^((n−1)/2) sin(((2π)/(2n)))sin(((4π)/(2n)))sin(((6π)/(2n)))...sin(((n−2)/(2n)))π=(√n)   p=sin(((2π)/(28)))sin(((4π)/(28)))sin(((6π)/(28)))sin(((8π)/(28)))sin(((10π)/(28)))sin(((12π)/(28)))  so comparing  2n=28→n=14  required answer=((√n)/2^((n−1)/2) )  =((√(14))/2^((13)/2) )=(((√7) ×(√2))/(2^6 ×(√2)))=((√7)/2^6 ) Answer
takinghelpfromS.LLoneyTrigonometry2n12sin(2π2n)sin(4π2n)sin(6π2n)sin(n22n)π=np=sin(2π28)sin(4π28)sin(6π28)sin(8π28)sin(10π28)sin(12π28)socomparing2n=28n=14requiredanswer=n2n12=142132=7×226×2=726Answer
Commented by TANMAY PANACEA last updated on 20/Oct/20
Answered by mindispower last updated on 20/Oct/20
let z^(14) −1=0  ⇒z^(14) −1=Π_(k=0) ^(13) (X−e^((2ikπ)/(14)) )⇒Π_(k=1) ^(13) (1−e^((2ikπ)/(14)) )=14  (1−e^((2ikπ)/(14)) )=e^((ikπ)/(14)) (e^((−ikπ)/(14)) −e^((ikπ)/(14)) )  =−2isin(((kπ)/(14)))e^(ik(π/(14)))   ⇒Π_(k=1) ^(13) (−2isin(((kπ)/(14)))).e^(i(π/(14))Σk) )=14  ⇒(−2i)^(13) Π_(k=1) ^6 sin(((kπ)/(14))).Π_(k=7) ^(13) sin(((kπ)/(14)))e^(i(π/(14))(7.13)) =14  ⇒(−2)^(13) .i.Π_(k=1) ^6 sin(((kπ)/(14))).Π_(k=1) ^7 sin((((14−k)π)/(14)))e^((1/2)13iπ) =14  sin(π−x)=sin(x),sin(((7π)/(14)))=sin((π/2))=1,e^((13iπ)/2) =i  ⇒(2)^(13) [Π_(k=1) ^6 sin(((kπ)/(14)))]^2 =14  ⇒Π_(k=1) ^6 sin(((kπ)/(14)))=((√7)/2^6 )
letz141=0z141=13k=0(Xe2ikπ14)13k=1(1e2ikπ14)=14(1e2ikπ14)=eikπ14(eikπ14eikπ14)=2isin(kπ14)eikπ1413k=1(2isin(kπ14)).eiπ14Σk)=14(2i)136k=1sin(kπ14).13k=7sin(kπ14)eiπ14(7.13)=14(2)13.i.6k=1sin(kπ14).7k=1sin((14k)π14)e1213iπ=14sin(πx)=sin(x),sin(7π14)=sin(π2)=1,e13iπ2=i(2)13[6k=1sin(kπ14)]2=146k=1sin(kπ14)=726
Commented by TANMAY PANACEA last updated on 20/Oct/20
excellent sif
excellentsif
Commented by TANMAY PANACEA last updated on 20/Oct/20
sir
sir
Commented by mindispower last updated on 20/Oct/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *