Menu Close

sin-pi-7-sin-2pi-7-sin-3pi-7-




Question Number 89202 by jagoll last updated on 16/Apr/20
sin ((π/7))sin (((2π)/7))sin (((3π)/7)) =?
$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=? \\ $$
Commented by jagoll last updated on 16/Apr/20
where sir?
$${where}\:{sir}? \\ $$
Commented by jdmath last updated on 16/Apr/20
Dr. peyam video may be helpful
$${Dr}.\:{peyam}\:{video}\:{may}\:{be}\:{helpful} \\ $$
Commented by jdmath last updated on 16/Apr/20
youtube...i wasnt able to copy the link..search it
$${youtube}…{i}\:{wasnt}\:{able}\:{to}\:{copy}\:{the}\:{link}..{search}\:{it} \\ $$
Commented by john santu last updated on 16/Apr/20
Π_(k=2) ^n  sin ((((k−1)π)/n)) = (n/2^(n−1) )  n = 7   sin ((π/7))sin (((2π)/7))sin (((3π)/7))sin (((4π)/7))  sin (((5π)/7))sin (((6π)/7)) = (7/(64))  ...(i)  sin ((π/7))=sin (((6π)/7))  sin (((2π)/7))=sin (((5π)/7))  sin (((3π)/7))=sin (((4π)/7))  (sin (π/7)sin ((2π)/7)sin ((3π)/7))^2  = (7/(64))  ⇒ sin (π/7)sin ((2π)/7)sin ((3π)/7) = (√(7/(64)))  = ((√7)/8)
$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\:\mathrm{sin}\:\left(\frac{\left({k}−\mathrm{1}\right)\pi}{{n}}\right)\:=\:\frac{{n}}{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$$${n}\:=\:\mathrm{7}\: \\ $$$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right) \\ $$$$\mathrm{sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{6}\pi}{\mathrm{7}}\right)\:=\:\frac{\mathrm{7}}{\mathrm{64}}\:\:…\left({i}\right) \\ $$$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{7}}\right)=\mathrm{sin}\:\left(\frac{\mathrm{6}\pi}{\mathrm{7}}\right) \\ $$$$\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)=\mathrm{sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{7}}\right) \\ $$$$\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)=\mathrm{sin}\:\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right) \\ $$$$\left(\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{7}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{7}}{\mathrm{64}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{7}}\:=\:\sqrt{\frac{\mathrm{7}}{\mathrm{64}}} \\ $$$$=\:\frac{\sqrt{\mathrm{7}}}{\mathrm{8}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *