sin-pxcos-qxdx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 20387 by tammi last updated on 26/Aug/17 ∫sinpxcosqxdx Answered by mrW1 last updated on 26/Aug/17 sin(p+q)x=sinpxcosqx+cospxsinqxsin(p−q)x=sinpxcosqx−cospxsinqx⇒sinpxcosqx=12[sin(p+q)x+sin(p−q)x]⇒∫sinpxcosqxdx=12[∫sin(p+q)xdx+∫sin(p−q)xdx]=−cos(p+q)x2(p+q)−cos(p−q)x2(p−q)+C Answered by Joel577 last updated on 26/Aug/17 I=∫sinpx.cosqxdx=12∫sin[(p+q)x]+sin[(p−q)x]dx=12(−cos[(p+q)x]p+q−cos[(p−q)x]p−q)+C=−12(cos[(p+q)x]p+q+cos[(p−q)x]p−q)+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-a-2-x-2-dx-Next Next post: sin-4-xdx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.