Menu Close

sin-pxcos-qxdx-




Question Number 20387 by tammi last updated on 26/Aug/17
∫sin pxcos qxdx
sinpxcosqxdx
Answered by mrW1 last updated on 26/Aug/17
sin (p+q)x=sin px cos qx+cos px sin qx  sin (p−q)x=sin px cos qx−cos px sin qx  ⇒sin px cos qx=(1/2)[sin (p+q)x+sin (p−q)x]  ⇒∫sin px cos qx dx=(1/2)[∫sin (p+q)x dx+∫sin (p−q)x dx]  =−((cos (p+q)x)/(2(p+q)))−((cos (p−q)x)/(2(p−q)))+C
sin(p+q)x=sinpxcosqx+cospxsinqxsin(pq)x=sinpxcosqxcospxsinqxsinpxcosqx=12[sin(p+q)x+sin(pq)x]sinpxcosqxdx=12[sin(p+q)xdx+sin(pq)xdx]=cos(p+q)x2(p+q)cos(pq)x2(pq)+C
Answered by Joel577 last updated on 26/Aug/17
I = ∫ sin px . cos qx dx      = (1/2)∫ sin [(p + q)x] + sin [(p − q)x] dx      = (1/2)(−((cos [(p + q)x])/(p + q)) − ((cos [(p − q)x])/(p − q))) + C      = −(1/2)(((cos [(p + q)x])/(p + q)) + ((cos [(p − q)x])/(p − q))) + C
I=sinpx.cosqxdx=12sin[(p+q)x]+sin[(pq)x]dx=12(cos[(p+q)x]p+qcos[(pq)x]pq)+C=12(cos[(p+q)x]p+q+cos[(pq)x]pq)+C

Leave a Reply

Your email address will not be published. Required fields are marked *