Menu Close

sin-sin-sin-2-Express-explicitly-in-terms-of-




Question Number 39486 by ajfour last updated on 06/Jul/18
sin θ=sin αsin (((θ+α)/2))  Express θ explicitly in terms of α.
sinθ=sinαsin(θ+α2)Expressθexplicitlyintermsofα.
Commented by math khazana by abdo last updated on 07/Jul/18
⇒2 sin((θ/2))cos((θ/2))=sinα(sin((θ/2))cos((α/2))+  cos((θ/2))sin((α/2)))  let put sin((θ/2))=x ⇒  2xξ(√(1−x^2 )) = sinα( x cos((α/2)) +ξ(√(1−x^2 ))sin((α/2)))⇒  2xξ(√(1−x^2 ))=sinα cos((α/2))x +sinαsin((α/2))ξ(√(1−x^2 ))  (2xξ−sin(α)sin((α/2))ξ)(√(1−x^2 ))=sin(α)cos((α/2))x⇒  (2x −sin(α)sin((α/2)))^2 (1−x^2 )=sin^2 (α)cos^2 ((α/2))x^2   4x^2  −4sin(α)sin((α/2))x +sin^2 (α)sin^2 ((α/2))  −sin^2 (α)cos^2 ((α/2))x^2  =0 ⇒  (4−sin^2 (α)cos^2 ((α/2)))x^2  −4 sin(α)sin((α/2))x  +sin^2 (α)sin^2 ((α/2)) =0  Δ^′   =4 sin^2 (α)sin^2 ((α/2))−(4−sin^2 (α)cos^2 ((α/2)))(sin^2 αsin^2 ((α/2)))  =4 sin^2 (α)sin^2 ((α/2)) −4sin^2 (α)sin^2 ((α/2))   +sin^4 (α) sin^2 ((α/2))cos^2 ((α/2))  =(1/4) sin^6 (α) ⇒x=((2sin(α)sin((α/2))+^− (1/2)∣sinα∣^3 )/(4−sin^2 (α)cos^2 ((α/2)))) ⇒  θ =2arcsin(x)⇒  θ =2arcsin{((2sin(α)sin((α/2)) +^−  (1/2)∣sinα∣^3 )/(4−sin^2 (α)cos^2 ((α/2))))}.
2sin(θ2)cos(θ2)=sinα(sin(θ2)cos(α2)+cos(θ2)sin(α2))letputsin(θ2)=x2xξ1x2=sinα(xcos(α2)+ξ1x2sin(α2))2xξ1x2=sinαcos(α2)x+sinαsin(α2)ξ1x2(2xξsin(α)sin(α2)ξ)1x2=sin(α)cos(α2)x(2xsin(α)sin(α2))2(1x2)=sin2(α)cos2(α2)x24x24sin(α)sin(α2)x+sin2(α)sin2(α2)sin2(α)cos2(α2)x2=0(4sin2(α)cos2(α2))x24sin(α)sin(α2)x+sin2(α)sin2(α2)=0Δ=4sin2(α)sin2(α2)(4sin2(α)cos2(α2))(sin2αsin2(α2))=4sin2(α)sin2(α2)4sin2(α)sin2(α2)+sin4(α)sin2(α2)cos2(α2)=14sin6(α)x=2sin(α)sin(α2)+12sinα34sin2(α)cos2(α2)θ=2arcsin(x)θ=2arcsin{2sin(α)sin(α2)+12sinα34sin2(α)cos2(α2)}.
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Jul/18
excellent question..pls give time ...
excellentquestion..plsgivetime
Commented by math khazana by abdo last updated on 07/Jul/18
ξ^2  =1
ξ2=1
Commented by ajfour last updated on 07/Jul/18
Commented by ajfour last updated on 07/Jul/18
If we take ∠CAD to be θ and  express  θ in terms of α. We then  obtain a in terms of radius R  and 𝛂 (which was the question).
IfwetakeCADtobeθandexpressθintermsofα.WethenobtainaintermsofradiusRandα(whichwasthequestion).
Commented by ajfour last updated on 07/Jul/18
Thank you Sir, let me see if i can  follow your solution.
ThankyouSir,letmeseeificanfollowyoursolution.
Commented by ajfour last updated on 08/Jul/18
line 6 to line 7 how Sir, please check;  what about term with x^4  and x^3   ?
line6toline7howSir,pleasecheck;whatabouttermwithx4andx3?

Leave a Reply

Your email address will not be published. Required fields are marked *